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Preface

The computing world has undergone a revol ution since the publication of The C Programming
Language in 1978. Big computers are much bigger, and personal computers have capabilities
that rival mainframes of a decade ago. During this time, C has changed too, although only
modestly, and it has spread far beyond its origins as the language of the UNIX operating
system.

The growing popularity of C, the changes in the language over the years, and the creation of
compilers by groups not involved in its design, combined to demonstrate a need for a more
precise and more contemporary definition of the language than the first edition of this book
provided. In 1983, the American National Standards Institute (ANSI) established a committee
whose goa was to produce “an unambiguous and machine-independent definition of the
language C", while still retaining its spirit. The result isthe ANSI standard for C.

The standard formalizes constructions that were hinted but not described in the first edition,
particularly structure assgnment and enumerations. It provides a new form of function
declaration that permits cross-checking of definition with use. It specifies a standard library,
with an extensive set of functions for performing input and output, memory management,
string manipulation, and smilar tasks. It makes precise the behavior of features that were not
spelled out in the original definition, and at the same time states explicitly which aspects of the
language remain machine-dependent.

This Second Edition of The C Programming Language describes C as defined by the ANSI
standard. Although we have noted the places where the language has evolved, we have chosen
to write exclusvely in the new form. For the most part, this makes no significant difference;
the most vigble change is the new form of function declaration and definition. Modern
compilers aready support most features of the standard.

We have tried to retain the brevity of the first edition. C is not a big language, and it is not well
served by a big book. We have improved the exposition of critical features, such as pointers,
that are central to C programming. We have refined the original examples, and have added new
examples in several chapters. For instance, the treatment of complicated declarations is
augmented by programs that convert declarations into words and vice versa. As before, dl
examples have been tested directly from the text, which isin machine-readable form.

Appendix A, the reference manud, is not the standard, but our attempt to convey the essentials
of the standard in asmaler space. It is meant for easy comprehension by programmers, but not
as a definition for compiler writers -- that role properly belongs to the standard itself.
Appendix B is a summary of the facilities of the standard library. It too is meant for reference
by programmers, not implementers. Appendix C is a concise summary of the changes from the
origina version.

As we said in the preface to the first edition, C ““wears well as one's experience with it grows'".
With a decade more experience, we ill fed that way. We hope that this book will help you
learn C and use it well.

We are deeply indebted to friends who helped us to produce this second edition. Jon Bently,
Doug Gwyn, Doug Mcllroy, Peter Nelson, and Rob Pike gave us perceptive comments on
almost every page of draft manuscripts. We are grateful for careful reading by Al Aho, Dennis
Allison, Joe Campbel, G.R. Emlin, Karen Fortgang, Allen Holub, Andrew Hume, Dave
Kristol, John Linderman, Dave Prosser, Gene Spafford, and Chris van Wyk. We aso received
helpful suggestions from Bill Cheswick, Mark Kernighan, Andy Koenig, Robin Lake, Tom
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London, Jm Reeds, Clovis Tondo, and Peter Weinberger. Dave Prosser answered many
detailed questions about the ANSl standard. We used Bjarne Stroustrup's C++ trandator
extensively for local testing of our programs, and Dave Kristol provided us with an ANSI C
compiler for final testing. Rich Drechder helped greatly with typesetting.

Our sincere thanks to all.

Brian W. Kernighan
Dennis M. Ritchie



Prefaceto thefirst edition

C is a genera-purpose programming language with features economy of expression, modern
flow control and data structures, and a rich set of operators. C is not a “very high leve"
language, nor a “"big" one, and is not specialized to any particular area of application. But its
absence of restrictions and its generality make it more convenient and effective for many tasks
than supposedly more powerful languages.

C was origindly designed for and implemented on the UNIX operating system on the DEC
PDP-11, by Dennis Ritchie. The operating system, the C compiler, and essentially al UNIX
applications programs (including al of the software used to prepare this book) are written in
C. Production compilers also exist for several other machines, including the IBM System/370,
the Honeywell 6000, and the Interdata 8/32. C is not tied to any particular hardware or system,
however, and it is easy to write programs that will run without change on any machine that
supports C.

This book is meant to help the reader learn how to program in C. It contains a tutorial
introduction to get new users started as soon as possible, separate chapters on each major
feature, and a reference manual. Most of the treatment is based on reading, writing and
revisng examples, rather than on mere statements of rules. For the most part, the examples are
complete, real programs rather than isolated fragments. All examples have been tested directly
from the text, which is in machine-readable form. Besides showing how to make effective use
of the language, we have aso tried where possible to illustrate useful algorithms and principles
of good style and sound design.

The book is not an introductory programming manud; it assumes some familiarity with basic
programming concepts like variables, assignment statements, loops, and functions.
Nonetheless, a novice programmer should be able to read aong and pick up the language,
although access to more knowledgeable colleague will help.

In our experience, C has proven to be a pleasant, expressive and versatile language for a wide
variety of programs. It is easy to learn, and it wears well as on's experience with it grows. We
hope that this book will help you to use it well.

The thoughtful criticisms and suggestions of many friends and colleagues have added greatly to
this book and to our pleasure in writing it. In particular, Mike Bianchi, Jm Blue, Stu Feldman,
Doug Mcllroy Bill Roome, Bob Rosin and Larry Rosler dl read multiple volumes with care.
We are dso indebted to Al Aho, Steve Bourne, Dan Dvorak, Chuck Haey, Debbie Haley,
Marion Harris, Rick Holt, Steve Johnson, John Mashey, Bob Mitze, Raph Muha, Peter
Nelson, Elliot Pinson, Bill Plauger, Jerry Spivack, Ken Thompson, and Peter Weinberger for
helpful comments at various stages, and to Mile Lesk and Joe Ossanna for invauable
assistance with typesetting.

Brian W. Kernighan
Dennis M. Ritchie



Chapter 1- A Tutorial Introduction

Let us begin with a quick introduction in C. Our am is to show the essential elements of the
language in real programs, but without getting bogged down in details, rules, and exceptions.
At this point, we are not trying to be complete or even precise (save that the examples are
meant to be correct). We want to get you as quickly as possible to the point where you can
write useful programs, and to do that we have to concentrate on the basics: variables and
constants, arithmetic, control flow, functions, and the rudiments of input and output. We are
intentionaly leaving out of this chapter features of C that are important for writing bigger
programs. These include pointers, structures, most of C's rich set of operators, severa control-
flow statements, and the standard library.

This approach and its drawbacks. Most notable is that the complete story on any particular
feature is not found here, and the tutorial, by being brief, may aso be mideading. And because
the examples do not use the full power of C, they are not as concise and elegant as they might
be. We have tried to minimize these effects, but be warned. Another drawback is that later
chapters will necessarily repeat some of this chapter. We hope that the repetition will help you
more than it annoys.

In any case, experienced programmers should be able to extrapolate from the materia in this
chapter to their own programming needs. Beginners should supplement it by writing small,
gmilar programs of their own. Both groups can use it as a framework on which to hang the
more detailed descriptions that begin in Chapter 2.

1.1 Getting Started

The only way to learn anew programming language is by writing programs in it. The first
program to write is the same for al languages:

Print the words

hell o, world

Thisisabig hurdle; to leap over it you have to be able to create the program text somewhere,
compile it successfully, load it, run it, and find out where your output went. With these
mechanical details mastered, everything elseis comparatively easy.

In C, the program to print “"hel I o, world"is

#i ncl ude <stdio. h>
mai n()

printf("hello, world\n");

Just how to run this program depends on the system you are using. As a specific example, on
the UNIX operating system you must create the program in a file whose name ends in ™. c¢",
such as hel | o. c, then compile it with the command

cc hello.c

If you haven't botched anything, such as omitting a character or misspelling something, the
compilation will proceed slently, and make an executable file called a. out . If you run a. out
by typing the command

a. out
it will print
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hell o, world
On other systems, the rules will be different; check with alocal expert.

Now, for some explanations about the program itself. A C program, whatever its size, consists
of functions and variables. A function contains statements that specify the computing
operations to be done, and variables store values used during the computation. C functions are
like the subroutines and functions in Fortran or the procedures and functions of Pascal. Our
example is a function named nai n. Normally you are at liberty to give functions whatever
names you like, but “mai n" is gpecial - your program begins executing at the beginning of
main. This means that every program must have a nai n somewhere.

mai n will usualy call other functions to help perform its job, some that you wrote, and others
from libraries that are provided for you. The first line of the program,

#i ncl ude <stdio. h>
tells the compiler to include information about the standard input/output library; the line
appears at the beginning of many C source files. The standard library is described in Chapter 7

and Appendix B.

One method of communicating data between functions is for the caling function to provide a
list of values, called arguments, to the function it calls. The parentheses after the function name
surround the argument list. In this example, mai n is defined to be a function that expects no
arguments, which isindicated by the empty list ( ).

#i ncl ude <stdio. h> i ncl ude information about standard
library
mai n() define a function called main
that received no argunent val ues
{ statements of main are enclosed in braces
printf("hello, world\n"); main calls library function printf
to print this sequence of characters
} \n represents the new ine character

Thefirst C program

The statements of a function are enclosed in braces{ }. The function nai n contains only one
statement,

printf("hello, world\n");
A function is caled by naming it, followed by a parenthesized list of arguments, so this cals
the function pri ntf with the argument "hel I o, world\n". printf isalibrary function that
prints output, in this case the string of characters between the quotes.

A sequence of characters in double quotes, like "hell o, world\n", is caled a character
string or string constant. For the moment our only use of character strings will be as
argumentsfor pri nt f and other functions.

The sequence \ n in the string is C notation for the newline character, which when printed
advances the output to the left margin on the next line. If you leave out the \ n (a worthwhile
experiment), you will find that there is no line advance after the output is printed. You must
use\ n to include a newline character inthe pri nt f argument; if you try something like

printf("hello, world
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the C compiler will produce an error message.

printf never supplies a newline character automatically, so several calls may be used to build
up an output line in stages. Our first program could just as well have been written

#i ncl ude <stdi o. h>
mai n()

printf("hello, ");
printf("world");
printf("\n");

to produce identical output.

Notice that \ n represents only a single character. An escape sequence like \ n provides a
general and extensible mechanism for representing hard-to-type or invisble characters. Among
the othersthat C providesare\t for tab, \ b for backspace, \ " for the double quote and \\ for
the backdash itself. Thereis acompletelist in Section 2.3.

Exercise 1-1. Runthe “"hel 1 o, worl d" program on your system. Experiment with leaving out
parts of the program, to see what error messages you get.

Exercise 1-2. Experiment to find out what happens when pri nt s's argument string contains
\c, where c is some character not listed above.

1.2 Variablesand Arithmetic Expressions

The next program uses the formula °C=(5/9)(°F-32) to print the following table of Fahrenheit
temperatures and their centigrade or Celsius equivalents:
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280 137
300 148

The program itsalf still consists of the definition of a single function named nai n. It is longer
than the one that printed “hell o, world", but not complicated. It introduces several new
ideas, including comments, declarations, variables, arithmetic expressions, loops , and
formatted output.

#i ncl ude <stdio. h>

/* print Fahrenheit-Cel sius table

for fahr = 0, 20, ..., 300 */
mai n()

int fahr, celsius;
int |ower, upper, step;

| ower = O; [* lower limt of tenperature scale */
upper = 300; [* upper limt */

step = 20; [* step size */

fahr = | ower;

while (fahr <= upper) {
celsius =5 * (fahr-32) / 9;
printf("%l\t%\n", fahr, celsius);
fahr = fahr + step;

}
}

Thetwo lines

/* print Fahrenheit-Celsius table
for fahr = 0, 20, ..., 300 */

are a comment, which in this case explains briefly what the program does. Any characters
between /* and */ are ignored by the compiler; they may be used freely to make a program
easier to understand. Comments may appear anywhere where a blank, tab or newline can.

In C, dl variables must be declared before they are used, usudly a the beginning of the
function before any executable statements. A declaration announces the properties of
variables; it consists of aname and alist of variables, such as

int fahr, celsius;
int |ower, upper, step;

The type i nt means that the variables listed are integers; by contrast with f | oat , which means
floating point, i.e., numbers that may have a fractiona part. The range of both i nt and f | oat

depends on the machine you are using; 16-bitsi nt s, which lie between -32768 and +32767,
are common, as are 32-bit i nt s. A f1 oat number istypicaly a 32-bit quantity, with at least Sx
significant digits and magnitude generally between about 10 and 10%.

C provides severa other datatypes besidesi nt and f | oat , including:
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‘char | character - asingle byte |
'short | short integer |
long  longinteger |
'doubl e | double-precision floating point |

The size of these objects is dso machine-dependent. There are aso arrays, structures and
unions of these basic types, pointers to them, and functions that return them, al of which we
will meet in due course.

Computation in the temperature conversion program begins with the assignment statements

| ower = O;
upper = 300;
step = 20;

which set the variables to their initid values. Individua statements are terminated by
semicolons.

Each line of the table is computed the same way, so we use aloop that repeats once per output
ling; thisis the purpose of the whi | e loop

while (fahr <= upper) {

}
The whi | e loop operates as follows: The condition in parentheses is tested. If it is true (f ahr

islessthan or equal to upper ), the body of the loop (the three statements enclosed in braces) is
executed. Then the condition is re-tested, and if true, the body is executed again. When the test
becomes fdse (f ahr exceeds upper ) the loop ends, and execution continues at the statement
that follows the loop. There are no further statements in this program, so it terminates.

The body of awhi | e can be one or more statements enclosed in braces, as in the temperature
converter, or asingle statement without braces, asin

while (i <j)
i =2 *i;

In either case, we will dways indent the statements controlled by the whi | e by one tab stop
(which we have shown as four spaces) so you can see a a glance which statements are insde
the loop. The indentation emphasizes the logical structure of the program. Although C
compilers do not care about how a program looks, proper indentation and spacing are critical
in making programs easy for people to read. We recommend writing only one statement per
line, and using blanks around operators to clarify grouping. The position of braces is less
important, although people hold passionate beliefs. We have chosen one of several popular
styles. Pick a style that suits you, then use it consistently.

Most of the work gets done in the body of the loop. The Celsius temperature is computed and
assigned to the variable cel si us by the statement

celsius =5 * (fahr-32) / 9;
The reason for multiplying by 5 and dividing by 9 instead of just multiplying by 5/ 9 is that in
C, as in many other languages, integer division truncates. any fractiona part is discarded.
Since 5 and 9 are integers. 5/ 9 would be truncated to zero and so dl the Celsius temperatures
would be reported as zero.

This example also shows a bit more of how printf works. printf is a genera-purpose
output formatting function, which we will describe in detail in Chapter 7. Its first argument is a
string of characters to be printed, with each %indicating where one of the other (second, third,
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...) arguments is to be substituted, and in what form it is to be printed. For instance, %l
specifies an integer argument, so the statement

printf("%l\t%\n", fahr, celsius);
causes the values of the two integersf ahr and cel si us to be printed, with atab (\t ) between
them.

Each % construction in the first argument of print f is paired with the corresponding second
argument, third argument, etc.; they must match up properly by number and type, or you will
get wrong answers.

By the way, printf is not part of the C language; there is no input or output defined in C
itself. printf isjust auseful function from the standard library of functions that are normally
accessible to C programs. The behaviour of pri nt f is defined in the ANS| standard, however,
S0 its properties should be the same with any compiler and library that conforms to the
standard.

In order to concentrate on C itsalf, we don't talk much about input and output until chapter 7.
In particular, we will defer formatted input until then. If you have to input numbers, read the
discussion of the function scanf in Section 7.4. scanf is like printf, except that it reads
input instead of writing output.

There are a couple of problems with the temperature conversion program. The smpler one is
that the output isn't very pretty because the numbers are not right-justified. That's easy to fix; if
we augment each % in the pri nt f statement with a width, the numbers printed will be right-
justified in their fields. For instance, we might say

printf("93d 9%d\n", fahr, celsius);
to print the first number of each line in a field three digits wide, and the second in a field Sx
digitswide, like this:

0 -17
20 -6
40 4
60 15
80 26

100 37

The more serious problem is that because we have used integer arithmetic, the Celsius
temperatures are not very accurate; for instance, 0°F is actually about -17.8°C, not -17. To get
more accurate answers, we should use floating-point arithmetic instead of integer. This
requires some changes in the program. Here is the second version:

#i ncl ude <stdi o. h>
/* print Fahrenheit-Cel sius table

for fahr = 0, 20, ..., 300; floating-point version */
mai n()

float fahr, celsius;
float |ower, upper, step;

| ower = O; [* lower limt of tenperatuire scale */
upper = 300; [* upper limt */

step = 20; [* step size */

fahr = | ower;

while (fahr <= upper) {
celsius = (5.0/9.0) * (fahr-32.0);
printf("93.0f %.1f\n", fahr, celsius);
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fahr = fahr + step;
} }
This is much the same as before, except that f anr and cel si us are declared to be f1 oat and
the formula for conversion is written in a more natural way. We were unable to use 5/ 9 in the
previous version because integer divison would truncate it to zero. A decimal point in a

constant indicates that it is floating point, however, so 5. 0/ 9. 0 is not truncated because it is
the ratio of two floating-point values.

If an arithmetic operator has integer operands, an integer operation is performed. If an
arithmetic operator has one floating-point operand and one integer operand, however, the
integer will be converted to floating point before the operation is done. If we had written
(fahr-32), the 32 would be automatically converted to floating point. Nevertheless, writing
floating-point constants with explicit decima points even when they have integral values
emphasizes their floating-point nature for human readers.

The detailed rules for when integers are converted to floating point are in Chapter 2. For now,
notice that the assignment

fahr = | ower;
and the test

whi l e (fahr <= upper)
also work in the natural way - thei nt is converted to f | oat before the operation is done.

Theprintf conversion specification 98. 0f says that a floating-point number (here f ahr) isto
be printed at least three characters wide, with no decimal point and no fraction digits. %6. 1f
describes another number (cel si us) that is to be printed at least Sx characters wide, with 1
digit after the decimal point. The output looks like this:

0 -17.8
20 -6.7
40 4.4

Wio.lt.h.and precision may be omitted from a specification: %6f says that the number is to be at
least 9x characters wide; % 2f gpecifies two characters after the decimal point, but the width is
not constrained; and % merely says to print the number as floating point.

% print asdecimal integer
‘o6d  print as decimal integer, at least 6 characters wide

‘oef  print asfloating point, at least 6 characters wide
‘% 2f  print asfloating point, 2 characters after decimal point
‘u. 2f  print asfloating point, at least 6 wide and 2 after decimal point

|
|
% | print as floating point |
|

Among others, printf aso recognizes %o for octal, % for hexadecimal, % for character, %
for character string and %8ofor itsalf.

Exercise 1-3. Modify the temperature conversion program to print a heading above the table.
Exercise 1-4. Write a program to print the corresponding Celsius to Fahrenheit table.

1.3 Thefor statement

There are plenty of different ways to write a program for a particular task. Let'stry a variation
on the temperature converter.

#i ncl ude <stdi o. h>
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/* print Fahrenheit-Celsius table */
mai n()

int fahr;

for (fahr = 0; fahr <= 300; fahr = fahr + 20)
printf("93d 9. 1f\n", fahr, (5.0/9.0)*(fahr-32));

}
This produces the same answers, but it certainly looks different. One maor change is the

elimination of most of the variables; only fahr remains, and we have made it an i nt. The
lower and upper limits and the step size appear only as constants in the f or statement, itself a
new construction, and the expression that computes the Celsius temperature now appears as
the third argument of pri nt f instead of a separate assignment statement.

This last change is an instance of a general rule - in any context where it is permissible to use
the value of some type, you can use a more complicated expression of that type. Since the third
argument of printf must be a floating-point value to match the 6. 1f, any floating-point
expression can occur here.

The for statement is a loop, a generdization of the whi | e. If you compare it to the earlier
whi | e, its operation should be clear. Within the parentheses, there are three parts, separated by
semicolons. The first part, theinitialization

fahr = 0



17

i s done once, before the loop proper is entered. The second part is the
test or condition that controls the | oop:

fahr <= 300
This condition is evaluated; if it is true, the body of the loop (here a single ptintf) is
executed. Then the increment step

fahr = fahr + 20
is executed, and the condition re-evaluated. The loop terminates if the condition has become
fase. As with the whil e, the body of the loop can be a single statement or a group of
statements enclosed in braces. The initialization, condition and increment can be any
expressions.

The choice between whi |l e and for is arbitrary, based on which seems clearer. The for is
usually appropriate for loops in which the initialization and increment are single statements and
logicaly related, since it is more compact than whi | e and it keeps the loop control statements
together in one place.

Exercise 1-5. Modify the temperature conversion program to print the table in reverse order,
that is, from 300 degreesto 0.

1.4 Symbolic Constants

A find observation before we leave temperature conversion forever. It's bad practice to bury
““magic numbers' like 300 and 20 in a program; they convey little information to someone who
might have to read the program later, and they are hard to change in a systematic way. One
way to deal with magic numbers is to give them meaningful names. A #def i ne line defines a
symbolic name or symbolic constant to be a particular string of characters:

#def i ne name replacement list

Thereafter, any occurrence of name (not in quotes and not part of another name) will be
replaced by the corresponding replacement text. The name has the same form as a variable
name: a sequence of letters and digits that begins with a letter. The replacement text can be
any sequence of characters; it isnot limited to numbers.

#i ncl ude <stdio. h>

#defi ne LONER O [* lower limt of table */
#define UPPER 300 /* upper limt */
#define STEP 20 [* step size */

/* print Fahrenheit-Celsius table */
mai n()

int fahr;

for (fahr = LONER, fahr <= UPPER;, fahr = fahr + STEP)
printf("93d 9. 1f\n", fahr, (5.0/9.0)*(fahr-32));

}
The quantities LOAER, UPPER and STEP are symbolic constants, not variables, so they do not

appear in declarations. Symbolic constant names are conventionally written in upper case 0
they can ber readily distinguished from lower case variable names. Notice that there is no
semicolon at the end of a#def i ne line.

1.5 Character Input and Output

We are going to consider a family of related programs for processing character data. Y ou will
find that many programs are just expanded versions of the prototypes that we discuss here.
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The model of input and output supported by the standard library is very smple. Text input or
output, regardiess of where it originates or where it goes to, is dedt with as streams of
characters. A text stream is a sequence of characters divided into lines, each line consists of
zero or more characters followed by a newline character. It isthe responsibility of the library to
make each input or output stream confirm this model; the C programmer using the library need
not worry about how lines are represented outside the program.

The standard library provides several functions for reading or writing one character at atime,
of which get char and put char are the smplest. Eachtimeit iscaled, get char reads the next
input character from atext stream and returns that asits value. That is, after

c = getchar();
the variable ¢ contains the next character of input. The characters normally come from the
keyboard; input from files is discussed in Chapter 7.

The function put char prints a character each timeit is called:

put char(c);
prints the contents of the integer variable ¢ as a character, usually on the screen. Calls to
put char and printf may be interleaved; the output will appear in the order in which the cdls
are made.

1.5.1 File Copying

Given get char and putchar, you can write a surprising amount of useful code without
knowing anything more about input and output. The smplest example is a program that copies
its input to its output one character at atime:

read a character
while (charater is not end-of-file indicator)
out put the character just read
read a character

Converting thisinto C gives:
#i ncl ude <stdio. h>

/* copy input to output; 1st version */
mai n()

int c;

c = getchar();
while (c !'= EOF) {
put char(c);
c = getchar();
} }
The relational operator ! = means " not equal to".
What appears to be a character on the keyboard or screen is of course, like everything else,
stored internaly just as a bit pattern. The type char is specifically meant for storing such
character data, but any integer type can be used. We used i nt for a subtle but important
reason.

The problem is distinguishing the end of input from valid data. The solution is that get char
returns a distinctive value when there is no more input, a value that cannot be confused with
any rea character. This value is cdled EOF, for “end of file". We must declare ¢ to be a type
big enough to hold any value that get char returns. We can't use char since ¢ must be big
enough to hold ECF in addition to any possible char . Thereforewe usei nt .
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ECF is an integer defined in <stdio.h>, but the specific numeric vaue doesn't matter as long as
it is not the same as any char vaue. By using the symbolic constant, we are assured that
nothing in the program depends on the specific numeric value.

The program for copying would be written more concisely by experienced C programmers. In
C, any assignment, such as

c = getchar();
is an expression and has a value, which is the value of the left hand sde after the assignment.
This means that a assgnment can appear as part of a larger expression. If the assignment of a
character to c is put inside the test part of awhi | e loop, the copy program can be written this

way:
#i ncl ude <stdi o. h>

/* copy input to output; 2nd version */
mai n()

int c;

while ((c = getchar()) != ECF)
put char(c);
}
The whi | e gets a character, assignsit to c, and then tests whether the character was the end-

of-file sgna. If it was not, the body of the whi | e IS executed, printing the character. The
whi | e then repeats. When the end of the input is findly reached, the whi | e terminates and so
does mai n.

This version centralizes the input - there is now only one reference to get char - and shrinks
the program. The resulting program is more compact, and, once the idiom is mastered, easier
to read. You'l see this style often. (It's possible to get carried away and create impenetrable
code, however, atendency that we will try to curb.)

The parentheses around the assignment, within the condition are necessary. The precedence of
I = is higher than that of =, which means that in the absence of parentheses the relational test ! =
would be done before the assignment =. So the statement

c = getchar() !'= EOF
isequivalent to

c = (getchar() !'= ECF)
This has the undesired effect of setting ¢ to 0 or 1, depending on whether or not the cal of
get char returned end of file. (More on thisin Chapter 2.)

Exercsise 1-6. Verify that the expression get char () !'= EOFisOor 1.
Exercise 1-7. Write a program to print the value of ECF.

1.5.2 Character Counting
The next program counts characters; it is similar to the copy program.
#i ncl ude <stdio. h>

/* count characters in input; 1st version */

mai n()
| ong nc;
nc = 0;

whil e (getchar() !'= ECF)
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+4ncC;
printf("%d\n", nc);

The statement

++ncC;
presents a new operator, ++, which means increment by one. Y ou could instead write nc = nc
+ 1 but ++nc is more concise and often more efficient. There is a corresponding operator - - to
decrement by 1. The operators ++ and -- can be ether prefix operators (++nc) or postfix
operators (nc++); these two forms have different values in expressions, as will be shown in
Chapter 2, but ++nc and nc++ both increment nc. For the moment we will will stick to the
prefix form.

The character counting program accumulates its count in a | ong variable instead of an int.
| ong integers are at least 32 bits. Although on some machines, i nt and | ong are the same size,
on others ani nt is 16 bits, with a maximum vaue of 32767, and it would take relatively little
input to overflow an i nt counter. The conversion specification % d tells printf that the
corresponding argument isal ong integer.

It may be possible to cope with even bigger numbers by using a doubl e (double precision
f1oat). We will so use af or statement instead of awhi | e, to illustrate another way to write
the loop.

#i ncl ude <stdio. h>

/* count characters in input; 2nd version */
mai n()

doubl e nc;
for (nc = 0; gechar() != ECF, ++nc)
printf("%0f\n", nc):

printf uses9 for bothfl oat and doubl e; % 0f suppresses the printing of the decimal point
and the fraction part, which is zero.

The body of this for loop is empty, because dl the work is done in the test and increment
parts. But the grammatical rules of C require that afor statement have a body. The isolated
semicolon, caled anull statement, is there to satisfy that requirement. We put it on a separate
line to make it visible.

Before we leave the character counting program, observe that if the input contains no
characters, the while or for test fals on the very first cal to getchar, and the program
produces zero, the right answer. This isimportant. One of the nice things about whi | e and f or
is that they test at the top of the loop, before proceeding with the body. If there is nothing to
do, nothing is done, even if that means never going through the loop body. Programs should
act intelligently when given zero-length input. The whi | e and f or statements help ensure that
programs do reasonabl e things with boundary conditions.

1.5.3 Line Counting

The next program counts input lines. As we mentioned above, the standard library ensures that
an input text stream appears as a sequence of lines, each terminated by a newline. Hence,
counting linesis just counting newlines:

#i ncl ude <stdi o. h>

/[* count lines in input */
mai n()
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int ¢, nl;

nl = 0;
while ((c = getchar()) != ECF)
if (c =='\n")
++nl ;
printf("%\n", nl);
}
The body of the whi | e now consists of ani f, which in turn controls the increment ++nl . The

i f statement tests the parenthesized condition, and if the condition is true, executes the
statement (or group of statements in braces) that follows. We have again indented to show
what is controlled by what.

The double equals sign == is the C notation for "is equal to" (like Pascal's single = or Fortran's
.EQ ). This symbal is used to distinguish the equality test from the single = that C uses for
assgnment. A word of caution: newcomers to C occasionally write = when they mean ==. As
we will seein Chapter 2, the result is usually alegal expression, so you will get no warning.

A character written between single quotes represents an integer vaue equal to the numerical
vaue of the character in the machine's character set. This is called a character constant,
although it is just another way to write a small integer. So, for example, ' A' is a character
constant; in the ASCII character set its value is 65, the internal representation of the character
A. Of course, ' A" isto be preferred over 65: its meaning is obvious, and it is independent of a
particular character set.

The escape sequences used in string constants are aso legal in character constants, so '\ n'
stands for the value of the newline character, which is 10 in ASCII. Y ou should note carefully
that ' \ n' isasngle character, and in expressionsis just an integer; on the other hand, ' \ n' is
a string constant that happens to contain only one character. The topic of strings versus
charactersis discussed further in Chapter 2.

Exercise 1-8. Write a program to count blanks, tabs, and newlines.

Exercise 1-9. Write a program to copy its input to its output, replacing each string of one or
more blanks by a single blank.

Exercise 1-10. Write a program to copy its input to its output, replacing each tab by \ t , each
backspace by \ b, and each backdash by \\. This makes tabs and backspaces visble in an
unambiguous way.

1.5.4Word Counting

The fourth in our series of useful programs counts lines, words, and characters, with the loose
definition that a word is any sequence of characters that does not contain a blank, tab or
newline. Thisis a bare-bones version of the UNIX program wc.

#i ncl ude <stdi o. h>

#define I N 1 /* inside a word */
#define QUT 0O /* outside a word */

/* count lines, words, and characters in input */
mai n()

int ¢, nl, nw, nc, state;
state = QUT;

nl = nw=nc = 0;
while ((c = getchar()) !'= EOF) {
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++NnC;
if (c =="'\n")
++nl ;
if (c=""1]] c=="\n"|] ¢ ="\t")
state = QUT;
else if (state == QUT) {
state = IN;
++nw,

} }
printf("% % %\n", nl, nw, nc);

Every time the program encounters the first character of aword, it counts one more word. The
variable st at e records whether the program is currently in aword or not; initidly it is " "not in
aword", which is assigned the value oUT. We prefer the symbolic constants | N and QuUT to the
literal values 1 and O because they make the program more readable. In a program as tiny as
this, it makes little difference, but in larger programs, the increase in clarity is well worth the
modest extra effort to write it this way from the beginning. You'll dso find that it's easier to
make extensive changes in programs where magic numbers appear only as symbolic constants.
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Theline

nl = nw=nc = 0;
sets dl three variables to zero. This is not a special case, but a consequence of the fact that an
assignment is an expression with the value and assignments associated from right to left. It's as
if we had written

nl = (nw=(nc =0));
The operator | | means OR, so the line

if (c==""1]] c=="\n" || c="\t")

says "if c isablank or ¢ isanewline or ¢ is atab". (Recal that the escape sequence \t isa
visible representation of the tab character.) There is a corresponding operator && for AND; its
precedence is just higher than | | . Expressions connected by && or || are evaluated left to
right, and it is guaranteed that evaluation will stop as soon as the truth or falsehood is known.
If ¢ is ablank, there is no need to test whether it is a newline or tab, so these tests are not
made. Thisisn't particularly important here, but is significant in more complicated situations, as
we will soon see.

The example aso shows an el se, which specifies an aternative action if the condition part of
anif statement isfalse. The general formis

i f (expression)
st at ement ,
el se
st at erment ,

One and only one of the two statements associated with an i f - el se is performed. If the
expression is true, statement, is executed; if not, statement, is executed. Each statement can be
a single statement or severa in braces. In the word count program, the one after the el se isan
i f that controls two statementsin braces.

Exercise 1-11. How would you test the word count program? What kinds of input are most
likely to uncover bugsif there are any?

Exercise 1-12. Write a program that prints its input one word per line.

1.6 Arrays

Let is write a program to count the number of occurrences of each digit, of white space
characters (blank, tab, newline), and of dl other characters. This is artificia, but it permits us
to illustrate several aspects of C in one program.

There are twelve categories of input, so it is convenient to use an array to hold the number of
occurrences of each digit, rather than ten individua variables. Here is one version of the
program:
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#i ncl ude <stdio. h>

/* count digits, white space, others */
mai n()

int ¢, i, nwhite, nother
int ndigit[10];

nwhite = nother = 0O;
for (i =0; i < 10; ++i)
ndigit[i] = 0;
while ((c = getchar()) != EOF)
if (c>"'0 && c <="'9")
++ndigit{c-'0"];
elseif (¢c="" 1] ¢c=="\n"|] ¢ =="\t")
++nwhi t e;
el se
++not her;

printf("digits =");
for (i =0; i < 10; ++i)
printf(" %", ndigit[i]);
printf(", white space = %, other = %l\n",
nwhi te, nother);
}

The output of this program on itself is

digits =9 300000001, white space = 123, other = 345
The declaration

int ndigit[10];
declares ndi gi t to be an array of 10 integers. Array subscripts dways start at zero in C, so the
elements are ndigit[0], ndigit[1], ..., ndigit[9]. Thisisreflected in the f or loops
that initialize and print the array.

A subscript can be any integer expression, which includes integer variables likei , and integer
constants.

This particular program relies on the properties of the character representation of the digits.
For example, the test

if (c>"'0 & c <="'9")
determines whether the character inc isadigit. If it is, the numeric value of that digit is

c-'0
Thisworksonlyif'o', '1', ..., '9' have consecutive increasing values. Fortunately, this
istruefor all character sets.

By definition, char s are just smal integers, so char variables and constants are identical to
i nt sin arithmetic expressions. This is natural and convenient; for example c-' 0' is an integer
expression with a value between 0 and 9 corresponding to the character ' 0' to' 9' storedinc,
and thus a valid subscript for the array ndi gi t .

The decision as to whether a character is a digit, white space, or something else is made with
the sequence

if (c>'0" && c <="'9")
++ndigit[c-'0"];

elseif (¢c="" 1] ¢c="\n"|] ¢ =="\t")
++nwhi t e;
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el se
++not her;

The pattern

if (condition,)
st at ement ,

else if (condition,)
st at erment ,

el se
st at enent ,

occurs frequently in programs as a way to express a multi-way decision. The conditions are
evaluated in order from the top until some condition is satisfied; a that point the
corresponding statement part is executed, and the entire construction is finished. (Any
statement can be several statements enclosed in braces.) If none of the conditions is satisfied,
the statement after the fina el se is executed if it is present. If the find el se and statement are
omitted, as in the word count program, no action takes place. There can be any number of

el se if (condition)
Statement

groups between theinitia i f and thefinal el se.

As a matter of style, it is advisable to format this construction as we have shown; if each i f
were indented past the previous el se, along sequence of decisions would march off the right
side of the page.

The swi t ch statement, to be discussed in Chapter 4, provides another way to write a multi-
way branch that is particulary suitable when the condition is whether some integer or character
expression matches one of a set of constants. For contrast, we will present aswi t ch version of
this program in Section 3.4.

Exercise 1-13. Write a program to print a histogram of the lengths of words in its input. It is
easy to draw the histogram with the bars horizontal; a vertical orientation is more challenging.

Exercise 1-14. Write a program to print a histogram of the frequencies of different characters
initsinput.

1.7 Functions

In C, afunction is equivalent to a subroutine or function in Fortran, or a procedure or function
in Pascal. A function provides a convenient way to encapsulate some computation, which can
then be used without worrying about its implementation. With properly designed functions, it
is possible to ignore how a job is done; knowing what is done is sufficient. C makes the sue of
functions easy, convinient and efficient; you will often see a short function defined and called
only once, just because it clarifies some piece of code.

So far we have used only functions like printf, getchar and putchar that have been
provided for us;, now it's time to write a few of our own. Since C has no exponentiation
operator like the ** of Fortran, let us illustrate the mechanics of function definition by writing
afunction power (m n) to raise an integer mto a positive integer power n. That is, the value of
power (2, 5) is32. Thisfunction is not a practical exponentiation routine, since it handles only
positive powers of smal integers, but it's good enough for illustration.(The standard library
contains afunction pow( x, y) that computes x.)

Here is the function power and a man program to exercise it, sO you can see the whole
structure at once.
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#i ncl ude <stdio. h>
int power(int m int n);

/* test power function */
mai n()

int i;

for (i =0; i < 10; ++i)
printf("%l % %\n", i, power(2,i), power(-3,i));
return O;

}

/* power: raise base to n-th power; n >= 0 */
int power(int base, int n)

int i, p;

p =1

for (i =1; i <=n; ++i)
p =p * base;

return p;

}
A function definition has this form:

return-type function-nane(paraneter declarations, if any)

decl arati ons
statenents

}
Function definitions can appear in any order, and in one source file or severa, athough no

function can be split between files. If the source program appears in severd files, you may have
to say more to compile and load it than if it al appears in one, but that is an operating system
matter, not alanguage attribute. For the moment, we will assume that both functions are in the
same file, so whatever you have learned about running C programs will still work.

The function power is called twice by mai n, intheline

printf("% % %\n", i, power(2,i), power(-3,i));
Each cdl passes two arguments to power , which each time returns an integer to be formatted
and printed. In an expression, power (2, i) isaninteger just as2 andi are. (Not dl functions
produce an integer value; we will take this up in Chapter 4.)

Thefirst line of power itsdf,

i nt power(int base, int n)
declares the parameter types and names, and the type of the result that the function returns.
The names used by power for its parameters are loca to power, and are not visble to any
other function: other routines can use the same names without conflict. Thisis also true of the
variablesi and p: thei in power isunrelated tothei in main.

We will generdly use parameter for a variable named in the parenthesized list in a function.
The terms formal argument and actual argument are sometimes used for the same distinction.

The value that power computes is returned to mai n by the r et ur n: statement. Any expression
may follow r et ur n:

return expr essi on;
A function need not return a value; a return statement with no expression causes control, but
no useful value, to be returned to the caler, as does fdling off the end" of a function by
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reaching the terminating right brace. And the caling function can ignore a vaue returned by a
function.

You may have noticed that there is aret urn statement at the end of mai n. Since mai n is a
function like any other, it may return a vaue to its caler, which is in effect the environment in
which the program was executed. Typicaly, a return value of zero implies normal termination;
non-zero values signa unusual or erroneous termination conditions. In the interests of
smplicity, we have omitted r et ur n statements from our nai n functions up to this point, but
we will include them hereafter, as a reminder that programs should return status to their
environment.

The declaration

i nt power(int base, int n);
just before mai n says that power is a function that expects two i nt arguments and returns an
i nt . This declaration, which is called a function prototype, has to agree with the definition and
uses of power . It isan error if the definition of a function or any uses of it do not agree with its
prototype.

parameter names need not agree. Indeed, parameter names are optional in a function
prototype, so for the prototype we could have written

int power(int, int);
Well-chosen names are good documentation however, so we will often use them.
A note of history: the biggest change between ANSI C and earlier versions is how functions

are declared and defined. In the original definition of C, the power function would have been
written like this:
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/* power: raise base to n-th power; n >= 0 */
/* (ol d-style version) */

power ( base, n)

i nt base, n;

{

int i, p;

p =1

for (i =1; i <=n; ++i)
p =p * base;

return p;

}
The parameters are named between the parentheses, and their types are declared before

opening the left brace; undeclared parameters are taken as i nt . (The body of the function is
the same as before.)

The declaration of power at the beginning of the program would have looked like this:

int power();
No parameter list was permitted, so the compiler could not readily check that power was being
called correctly. Indeed, since by default power would have been assumed to return ani nt , the
entire declaration might well have been omitted.

The new syntax of function prototypes makes it much easier for a compiler to detect errorsin
the number of arguments or their types. The old style of declaration and definition still works
in ANSI C, a least for atransition period, but we strongly recommend that you use the new
form when you have a compiler that supportsit.

Exercise 1.15. Rewrite the temperature conversion program of Section 1.2 to use a function
for conversion.

1.8 Arguments - Call by Value

One aspect of C functions may be unfamiliar to programmers who are used to some other
languages, particulary Fortran. In C, dl function arguments are passed by value." This means
that the called function is given the values of its arguments in temporary variables rather than
the originas. This leads to some different properties than are seen with ““cal by reference”
languages like Fortran or with var parametersin Pascal, in which the called routine has access
to the original argument, not alocal copy.

Cal by value is an asset, however, not a liability. It usualy leads to more compact programs
with fewer extraneous variables, because parameters can be treated as conveniently initialized
local variables in the called routine. For example, here is a version of power that makes use of
this property.

/* power: raise base to n-th power; n >= 0; version 2 */

i nt power(int base, int n)

int p;

for (p =1, n>0; --n)
p =p * base;

return p;

}
The parameter n is used as a temporary variable, and is counted down (a f or loop that runs

backwards) until it becomes zero; there is no longer a need for the variable i . Whatever is
doneto n ingde power has no effect on the argument that power was originally called with.

When necessary, it is possible to arrange for a function to modify avariable in a calling routine.
The caler must provide the address of the variable to be set (technically a pointer to the
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variable), and the called function must declare the parameter to be a pointer and access the
variable indirectly through it. We will cover pointersin Chapter 5.

The story is different for arrays. When the name of an array is used as an argument, the value
passed to the function is the location or address of the beginning of the array - there is no
copying of array elements. By subscripting this value, the function can access and ater any
argument of the array. Thisisthe topic of the next section.

1.9 Character Arrays

The most common type of array in C is the array of characters. To illustrate the use of
character arrays and functions to manipulate them, let's write a program that reads a set of text
lines and prints the longest. The outline is smple enough:

while (there's another |ine)
if (it's longer than the previous |ongest)
(save it)
(save its | ength)
print |ongest line

This outline makes it clear that the program divides naturally into pieces. One piece gets a new
line, another saves it, and the rest controls the process.

Since things divide so nicdly, it would be well to write them that way too. Accordingly, let us
first write a separate function get | i ne to fetch the next line of input. We will try to make the
function useful in other contexts. At the minimum, getline has to return a signa about
possible end of file; a more useful design would be to return the length of the line, or zero if
end of file is encountered. Zero is an acceptable end-of-file return because it is never a vaid
line length. Every text line has at least one character; even aline containing only a newline has
length 1.

When we find a line that is longer than the previous longest line, it must be saved somewhere.
This suggests a second function, copy, to copy the new line to a safe place.

Finally, we need amain program to control get | i ne and copy. Here is the resullt.
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#i ncl ude <stdio. h>
#def i ne MAXLI NE 1000 /[* maxi muminput line length */

int getline(char line[], int maxline);
voi d copy(char to[], char fron{])

/* print the |longest input line */

mai n()
int len; /[* current line length */
i nt max; /* maxi mum | ength seen so far */
char |ine[ MAXLI NE] ; [* current input line */
char |ongest[ MAXLINE]; /* longest |ine saved here */
max = O;
while ((len = getline(line, MAXLINE)) > 0)
if (len > max) {
max = | en;
copy(!l ongest, line);

if (max >0) /* there was a line */
printf("%", |ongest);
return O;

}

/* getline: read alineinto s, return length */
int getline(char s[],int Iim

int c, i;

for (i=0; i <lim1l & (c=getchar())!=ECF && c!="\n"; ++i)

s[i] = c;

if (c =="\n") {
s[i] = c;
++i

b

s[i] ="\0";

return i;

}

/* copy: copy 'from into '"to'; assune to is big enough */
voi d copy(char to[], char froni])
{

int i;

i = 0;
while ((to[i] = fronfi]) !="\0")
++i
}
The functions get | i ne and copy are declared at the beginning of the program, which we

assume is contained in onefile.

mai n and getline communicate through a pair of arguments and a returned vaue. In
get | i ne, the arguments are declared by the line

int getline(char s[], int lim;
which specifies that the first argument, s, is an array, and the second, | i m is an integer. The
purpose of supplying the size of an array in a declaration is to set aside storage. The length of
an array s is not necessary in getline Since its Size is set in mai n. getline useSreturn to
send a vaue back to the caler, just as the function power did. This line dso declares that
getlinereturnsanint; sincei nt isthe default return type, it could be omitted.

Some functions return a useful value; others, like copy, are used only for their effect and return
no value. The return type of copy isvoi d, which states explicitly that no value is returned.
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get | i ne puts the character '\ 0' (the null character, whose value is zero) at the end of the
array it is creating, to mark the end of the string of characters. This conversion is also used by
the C language: when a string constant like

"hel | o\ n"
appears in a C program, it is stored as an array of characters containing the characters in the
string and terminated with a* \ 0' to mark the end.

h|e|1l|1]|o | \n|\O

The % format specification in printf expects the corresponding argument to be a string
represented in this form. copy aso relies on the fact that its input argument is terminated with
a'\0', and copies this character into the outpui.

It is worth mentioning in passing that even a program as smal as this one presents some sticky
design problems. For example, what should mai n do if it encounters a line which is bigger than
its limit? get | i ne works safely, in that it stops collecting when the array is full, even if no
newline has been seen. By testing the length and the last character returned, main can
determine whether the line was too long, and then cope as it wishes. In the interests of brevity,
we have ignored thisissue.

There is no way for auser of get | i ne to know in advance how long an input line might be, so
get | i ne checks for overflow. On the other hand, the user of copy aready knows (or can find
out) how big the strings are, so we have chosen not to add error checking to it.

Exercise 1-16. Revise the main routine of the longest-line program so it will correctly print the
length of arbitrary long input lines, and as much as possible of the text.

Exercise 1-17. Write aprogram to print al input lines that are longer than 80 characters.

Exercise 1-18. Write a program to remove trailing blanks and tabs from each line of input, and
to delete entirely blank lines.

Exercise 1-19. Write a function rever se(s) that reverses the character string s. Use it to
write a program that reversesitsinput aline a atime.

1.10 External Variables and Scope

The variables in mai n, such as|i ne, | ongest , €etc., are private or loca to mai n. Because they
are declared within mai n, no other function can have direct access to them. The same is true of
the variables in other functions; for example, the variable i in get | i ne isunrelated to thei in
copy. Each local variable in a function comes into existence only when the function is called,
and disappears when the function is exited. This is why such variables are usualy known as
automatic variables, following terminology in other languages. We will use the term automatic
henceforth to refer to these local variables. (Chapter 4 discusses the st ati ¢ storage class, in
which local variables do retain their values between calls.)

Because automatic variables come and go with function invocation, they do not retain their
values from one call to the next, and must be explicitly set upon each entry. If they are not set,
they will contain garbage.

As an aternative to automatic variables, it is possible to define variables that are external to dl
functions, that is, variables that can be accessed by name by any function. (This mechanism is
rather like Fortran COMMON or Pascal variables declared in the outermost block.) Because
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external variables are globaly accessible, they can be used instead of argument lists to
communicate data between functions. Furthermore, because externa variables remain in
existence permanently, rather than appearing and disappearing as functions are called and
exited, they retain their values even after the functions that set them have returned.

An external variable must be defined, exactly once, outside of any function; this sets aside
storage for it. The variable must also be declared in each function that wants to access it; this
states the type of the variable. The declaration may be an explicit ext er n statement or may be
implicit from context. To make the discussion concrete, let us rewrite the longest-line program
with line, Iongest, and max as externa variables. This requires changing the calls,
declarations, and bodies of al three functions.

#i ncl ude <stdio. h>

#def i ne MAXLI NE 1000 [* maxi muminput line size */

i nt max; /* maxi mum | ength seen so far */
char |ine[ MAXLI NE] ; [* current input line */
char | ongest[ MAXLINE]; /* longest |ine saved here */

int getline(void);
voi d copy(void);

/* print |longest input line; specialized version */
mai n()

int |en;
extern int max;
extern char |ongest[];

max = O;
while ((len = getline()) > 0)
if (len > max) {
max = | en;
copy();

if (max >0) /* there was a line */
printf("%", |ongest);
return O;
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/* getline: specialized version */
int getline(void)

int ¢, i;
extern char line[];

for (i =0; i < MAXLINE - 1

&% (c=getchar)) !'= EOF & c !'="\n"; ++i)
line[i] = c;
if (c =="'\n") {
line[i] = c;
++i
oo
line[i] = "\0";
return i;

}

/* copy: specialized version */
voi d copy(void)
{

int i;

extern char line[], longest[];

i = 0;

while ((longest[i] = line[i]) !="\0")
+4i ]

}
The externa variables in nai n, get | i ne and copy are defined by the first lines of the example
above, which state their type and cause storage to be alocated for them. Syntactically, externa
definitions are just like definitions of local variables, but since they occur outside of functions,
the variables are externa. Before a function can use an externa variable, the name of the
variable must be made known to the function; the declaration is the same as before except for
the added keyword ext er n.

In certain circumstances, the extern declaration can be omitted. If the definition of the
external variable occurs in the source file before its use in a particular function, then there is no
need for an ext er n declaration in the function. The ext er n declarationsin nmai n, get | i ne and
copy are thus redundant. In fact, common practice is to place definitions of al externa
variables at the beginning of the source file, and then omit all extern declarations.

If the program is in several source files, and a variable is defined in filel and used in file2 and
file3, then ext er n declarations are needed in file2 and file3 to connect the occurrences of the
variable. The usual practice is to collect ext ern declarations of variables and functions in a
separate file, historicaly caled a header, that is included by #i ncl ude at the front of each
source file. The suffix . h is conventional for header names. The functions of the standard
library, for example, are declared in headers like <st di 0. h>. This topic is discussed at length
in Chapter 4, and the library itself in Chapter 7 and Appendix B.

Since the specialized versions of get | i ne and copy have no arguments, logic would suggest
that their prototypes at the beginning of the file should be getline() and copy(). But for
compatibility with older C programs the standard takes an empty lis as an old-style
declaration, and turns off al argument list checking; the word voi d must be used for an
explicitly empty list. We will discuss this further in Chapter 4.

You should note that we are using the words definition and declaration carefully when we
refer to external variables in this section.” Definition" refers to the place where the variable is
created or assigned storage; " declaration” refers to places where the nature of the variable is
stated but no storage is allocated.
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By the way, there is a tendency to make everything in sight an ext ern variable because it
appears to amplify communications - argument lists are short and variables are always there
when you want them. But external variables are aways there even when you don't want them.
Relying too heavily on external variables is fraught with peril since it leads to programs whose
data connections are not al obvious - variables can be changed in unexpected and even
inadvertent ways, and the program is hard to modify. The second version of the longest-line
program is inferior to the first, partly for these reasons, and partly because it destroys the
generality of two useful functions by writing into them the names of the variables they
manipul ate.

At this point we have covered what might be called the conventional core of C. With this
handful of building blocks, it's possible to write useful programs of considerable size, and it
would probably be a good idea if you paused long enough to do so. These exercises suggest
programs of somewhat greater complexity than the ones earlier in this chapter.

Exercise 1-20. Write a program det ab that replaces tabs in the input with the proper number
of blanks to space to the next tab stop. Assume afixed set of tab stops, say every n columns.
Should n be avariable or a symbolic parameter?

Exercise 1-21. Write a program ent ab that replaces strings of blanks by the minimum number
of tabs and blanks to achieve the same spacing. Use the same tab stops as for det ab. When
either a tab or a single blank would suffice to reach a tab stop, which should be given
preference?

Exercise 1-22. Write a program to ~“fold" long input lines into two or more shorter lines after
the last non-blank character that occurs before the n-th column of input. Make sure your
program does something intelligent with very long lines, and if there are no blanks or tabs
before the specified column.

Exercise 1-23. Write a program to remove al comments from a C program. Don't forget to
handle quoted strings and character constants properly. C comments don't nest.

Exercise 1-24. Write a program to check a C program for rudimentary syntax errors like
unmatched parentheses, brackets and braces. Don't forget about quotes, both single and
double, escape sequences, and comments. (This program is hard if you do it in full generality.)
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Chapter 2 - Types, Operatorsand
EXpressions

Variables and constants are the basic data objects manipulated in a program. Declarations list
the variables to be used, and state what type they have and perhaps what their initial values are.
Operators specify what is to be done to them. Expressions combine variables and constants to
produce new values. The type of an object determines the set of vaues it can have and what
operations can be performed on it. These building blocks are the topics of this chapter.

The ANS standard has made many small changes and additions to basic types and expressions.
There are now si gned and unsi gned forms of al integer types, and notations for unsigned
constants and hexadecimal character constants. Floating-point operations may be done in
sngle precision; there is aso al ong double type for extended precision. String constants may
be concatenated at compile time. Enumerations have become part of the language, formalizing
a feature of long standing. Objects may be declared const, which prevents them from being
changed. The rules for automatic coercions among arithmetic types have been augmented to
handle the richer set of types.

2.1 Variable Names

Although we didn't say so in Chapter 1, there are some restrictions on the names of variables
and symbolic constants. Names are made up of letters and digits; the first character must be a
letter. The underscore ~_" counts as a letter; it is sometimes useful for improving the
readability of long variable names. Don't begin variable names with underscore, however, since
library routines often use such names. Upper and lower case letters are distinct, so x and X are
two different names. Traditional C practice is to use lower case for variable names, and dl
upper case for symbolic constants.

At least the first 31 characters of an interna name are significant. For function names and
external variables, the number may be less than 31, because external names may be used by
assemblers and loaders over which the language has no control. For externa names, the
standard guarantees uniqueness only for 6 characters and a single case. Keywords like i f,
el se, int, float, €tc., are reserved: you can't use them as variable names. They must be in
lower case.

It's wise to choose variable names that are related to the purpose of the variable, and that are
unlikely to get mixed up typographically. We tend to use short names for local variables,
especially loop indices, and longer names for external variables.

2.2 Data Typesand Sizes

There are only afew basic data typesin C:
char  asingle byte, capable of holding one character in the local character set
int an integer, typically reflecting the natural size of integers on the host machine
float gingle-precision floating point
doubl e double-precision floating point

In addition, there are a number of qualifiers that can be applied to these basic types. short and
| ong apply to integers:

short int sh;
[ ong int counter;

Theword i nt can be omitted in such declarations, and typicaly it is.
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The intent isthat short and | ong should provide different lengths of integers where practical;
i nt will normally be the natural size for a particular machine. short is often 16 bits long, and
int ether 16 or 32 bits. Each compiler is free to choose appropriate sizes for its own
hardware, subject only to the the restriction that short sand ints are at least 16 bits, | ongs are
at least 32 bits, and short isno longer than i nt, which isno longer than | ong.

The qualifier si gned or unsi gned may be applied to char or any integer. unsi gned numbers
are dways positive or zero, and obey the laws of arithmetic modulo 2", where n is the number
of bits in the type. So, for instance, if char s are 8 bits, unsi gned char variables have values
between 0 and 255, while si gned chars have vaues between -128 and 127 (in a two's
complement machine.) Whether plain char s are signed or unsigned is machine-dependent, but
printable characters are always positive.

The type | ong doubl e specifies extended-precision floating point. As with integers, the sizes
of floating-point objects are implementation-defined; f | oat , doubl e and | ong doubl e could
represent one, two or three distinct sizes.

The standard headers <l i mi t's. h> and <f | oat . h> contain symbolic constants for dl of these
sizes, adong with other properties of the machine and compiler. These are discussed in

Appendix B.

Exercise 2-1. Write a program to determine the ranges of char, short, int, and | ong
variables, both si gned and unsi gned, by printing appropriate values from standard headers
and by direct computation. Harder if you compute them: determine the ranges of the various
floating-point types.

2.3 Constants

An integer constant like 1234 isani nt . A | ong constant is written with aterminal | (ell) or L,
as in 123456789L; an integer constant too big to fit into an i nt will aso be taken as a long.
Unsigned constants are written with a terminal u or U, and the suffix ul or UL indicates
unsi gned | ong.

Floating-point constants contain a decima point (123. 4) or an exponent (1e- 2) or both; their
type is doubl e, unless suffixed. The suffixesf or F indicate af | oat constant; | or L indicate a
| ong doubl e.

The vaue of an integer can be specified in octal or hexadecimal instead of decimal. A leading 0
(zero) on an integer constant means octal; aleading 0x or 0X means hexadecimal. For example,
decima 31 can be written as 037 in octal and 0x1f or 0x1F in hex. Octal and hexadecimal
constants may aso be followed by L to make them | ong and U to make them unsi gned: OXFUL
isan unsigned long constant with value 15 decimal.

A character constant isan integer, written as one character within single quotes, such as
' x' . The value of a character constant is the numeric value of the character in the machine's
character set. For example, in the ASCII character set the character constant ' 0' has the value
48, which is unrelated to the numeric value 0. If we write' 0' instead of a numeric vaue like
48 that depends on the character set, the program is independent of the particular value and
easier to read. Character constants participate in numeric operations just as any other integers,
although they are most often used in comparisons with other characters.

Certain characters can be represented in character and string constants by escape sequences
like\ n (newline); these sequences look like two characters, but represent only one. In addition,
an arbitrary byte-sized hit pattern can be specified by

"\ 000’
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where 000 is one to three octal digits (0...7) or by

"\ xhh'
where hh is one or more hexadecimal digits(0...9, a...f, A ..F). Sowemightwrite

#defi ne VTAB '\ 013’ /* ASCI| vertical tab */
#defi ne BELL '\ 007 /* ASCI| bell character */

or, in hexadecimal,

#defi ne VTAB '\ xb' /* ASCI| vertical tab */
#defi ne BELL '\ x7' /* ASCI| bell character */

The complete set of escape sequencesis

\a dert (bell) character | \\  backslash |
\b  backspace \?  question mark |
\f  formfeed | \' | singlequote |
\n  newline \" | double quote |
\r | carriage return '\ 000 | octal number |
\t | horizontal tab ' \xhh | hexadecimal number |
\v  vertical tab | |

The character constant ' \ 0' represents the character with value zero, the null character. ' \ 0’
is often written instead of 0 to emphasize the character nature of some expression, but the
numeric valueisjust O.

A constant expression is an expression that involves only constants. Such expressions may be
evaluated at during compilation rather than run-time, and accordingly may be used in any place
that a constant can occur, asin

#defi ne MAXLI NE 1000
char 1ine[ MAXLI NE+1] ;

or

#define LEAP 1 /* in |l eap years */
int days[31+28+LEAP+31+30+31+30+31+31+30+31+30+31] ;

A string constant, or string literal, is a sequence of zero or more characters surrounded by
double quotes, asin

"I ama string"
or

" /* the enpty string */
The quotes are not part of the string, but serve only to delimit it. The same escape sequences
used in character constants apply in strings; \ " represents the double-quote character. String
constants can be concatenated at compile time:

"hello, " "world"
isequivalent to

"hell o, world"
Thisis useful for splitting up long strings across several source lines.

Technically, a string constant is an array of characters. The internal representation of a string
has a null character '\ 0' at the end, so the physica storage required is one more than the
number of characters written between the quotes. This representation means that there is no
limit to how long a string can be, but programs must scan a string completely to determine its
length. The standard library function strlen(s) returns the length of its character string
argument s, excluding the terminal ' \ 0' . Hereis our version:
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/* strlen: return length of s */
int strlen(char s[])

r
int i;
while (s[i] '="\0")
++i
return i;

}
strl en and other string functions are declared in the standard header <st ri ng. h>.

Be careful to distinguish between a character constant and a string that contains a single
character: ' x' is not the same as " x" . The former is an integer, used to produce the numeric
value of the letter x in the machine's character set. The latter is an array of characters that
contains one character (theletter x) anda' \ 0' .

There is one other kind of constant, the enumeration constant. An enumeration is a list of
constant integer values, asin

enum bool ean { NO YES };
The first name in an enum has vaue O, the next 1, and so on, unless explicit values are
gpecified. If not dl values are specified, unspecified values continue the progression from the
last specified value, as the second of these examples:

enum escapes { BELL = '\a', BACKSPACE = '\b', TAB = "\t",
NEW.INE = "\n', VTAB = "\v', RETURN = "\r"' };

enum nonths { JAN = 1, FEB, MAR APR, MAY, JUN,
JUL, AUG SEP, OCT, NOV, DEC};
/* FEB = 2, MAR = 3, etc. */

Names in different enumerations must be distinct. Values need not be distinct in the same
enumeration.

Enumerations provide a convenient way to associate constant values with names, an alternative
to #def i ne with the advantage that the values can be generated for you. Although variables of
enumtypes may be declared, compilers need not check that what you store in such avariable is
a vdid vaue for the enumeration. Nevertheless, enumeration variables offer the chance of
checking and so are often better than #def i nes. In addition, a debugger may be able to print
values of enumeration variables in their symbolic form.

2.4 Declar ations

All variables must be declared before use, athough certain declarations can be made implicitly
by content. A declaration specifies a type, and contains a list of one or more variables of that

type, asin

int |ower, upper, step;

char c¢, 1ine[1000];
Variables can be distributed among declarations in any fashion; the lists above could well be
written as

int |ower;
int upper;
int step;
char c;

char 1ine[1000];
The latter form takes more space, but is convenient for adding a comment to each declaration
for subsequent modifications.
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A variable may aso be initidized in its declaration. If the name is followed by an equals sign
and an expression, the expression serves as an initiaizer, asin

char esc = "\\'

int i = 0;

i nt limt = MAXLI NE+1
float eps = 1.0e-5;

If the variable in question is not automatic, the initiaization is done once only, conceptionally
before the program starts executing, and the initidizer must be a constant expression. An
explicitly initilized automatic variable is initidlized each time the function or block it isin is
entered; the initializer may be any expression. Externa and static variables are initialized to
zero by default. Automatic variables for which is no explicit initidlizer have undefined (i.e.,
garbage) values.

The qualifier const can be applied to the declaration of any variable to specify that its value
will not be changed. For an array, the const qualifier says that the elements will not be altered.

const double e = 2.71828182845905;
const char nsg[] = "warning: "

The const declaration can adso be used with array arguments, to indicate that the function
does not change that array:

int strlen(const char[]);
The result is implementation-defined if an attempt is made to change aconst .

2.5 Arithmetic Operators

The binary arithmetic operators are +, -, *, /, and the modulus operator % Integer divison
truncates any fractional part. The expression

X %y
produces the remainder when x is divided by y, and thus is zero when y divides x exactly. For
example, ayear isaleap year if it isdivisble by 4 but not by 100, except that years divisble by
400 are leap years. Therefore

if ((year %4 == 0 && year % 100 !'=0) || year %400 == 0)
printf("%l is a | eap year\n", year);

el se
printf("%l is not a |leap year\n", year);

The %operator cannot be applied to afl oat or doubl e. The direction of truncation for / and
the sign of the result for %are machine-dependent for negative operands, as is the action taken
on overflow or underflow.

The binary + and - operators have the same precedence, which is lower than the precedence of
*, 1 and % which isin turn lower than unary + and - . Arithmetic operators associate left to
right.

Table 2.1 at the end of this chapter summarizes precedence and associativity for al operators.

2.6 Relational and L ogical Operators
The relational operators are

> >= < <=
They al have the same precedence. Just below them in precedence are the equality operators:

Relational operators have lower precedence than arithmetic operators, so an expression like i
< lim1listakenasi < (Iim1),aswould beexpected.
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More interesting are the logical operators & and | | . Expressions connected by && or || are
evaluated left to right, and evaluation stops as soon as the truth or falsehood of the result is
known. Most C programs rely on these properties. For example, here is a loop from the input
function get | i ne that we wrote in Chapter 1:

for (i=0; i <liml & (c=getchar()) !'="\n" && c != ECF, ++i)
s[i] = c;
Before reading a new character it is necessary to check that there is room to store it in the
array s, sothetesti < Iim 1 must be made first. Moreover, if thistest fails, we must not go
on and read another character.

Smilarly, it would be unfortunate if ¢ were tested against EOF before get char is caled;
therefore the call and assignment must occur before the character in c is tested.

The precedence of && is higher than that of | | , and both are lower than relational and equality
operators, so expressions like

i <liml & (c=getchar()) !="'"\n" && c != ECOF
need no extra parentheses. But since the precedence of != is higher than assignment,
parentheses are needed in

(c=getchar()) !'="\n'
to achieve the desired result of assignment to ¢ and then comparison with' \ n' .

By definition, the numeric value of arelational or logical expression is 1 if the relation is true,
and O if therelation is false.

The unary negation operator ! converts a non-zero operand into O, and a zero operand in 1. A
common use of ! isin constructions like

if (!valid)
rather than

if (valid == 0)
It's hard to generalize about which form is better. Constructions like ! val i d read nicely ("if
not valid"), but more complicated ones can be hard to understand.

Exercise 2-2. Write aloop equivalent to the f or loop above without using &8 or | | .

2.7 Type Conversions

When an operator has operands of different types, they are converted to a common type
according to a smal number of rules. In genera, the only automatic conversions are those that
convert a narrower” operand into a “wider" one without losing information, such as
converting an integer into floating point in an expression like f + i . Expressions that don't
make sense, like using a f1 oat as a subscript, are disallowed. Expressions that might lose
information, like assigning a longer integer type to a shorter, or a floating-point type to an
integer, may draw awarning, but they are not illegal.

A char is just a smal integer, so chars may be freely used in arithmetic expressions. This
permits considerable flexibility in certain kinds of character transformations. One is exemplified
by this naive implementation of the function at oi , which converts a string of digits into its
numeric equivalent.

/* atoi: convert s to integer */
int atoi (char s[])

{

int i, n;
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n = 0;

for (i =0; s[i] >="'0" & s[i] <="'9'; ++)
n=10* n+ (s[i] - "0");

return n;

}
Aswe discussed in Chapter 1, the expression

s[i] - 'O
gives the numeric value of the character stored ins[i ], because the values of ' 0", ' 1, etc.,
form a contiguous increasing sequence.

Another example of char to int conversion is the function | ower, which maps a single
character to lower case for the ASCII character set. If the character is not an upper case letter,
| ower returnsit unchanged.

/* lower: convert c to |ower case; ASCII only */
int lower(int c)

if (c >"A & c <="'2")
returnc + 'a'" - 'A;
el se
return c;

}
This works for ASCII because corresponding upper case and lower case letters are a fixed

distance apart as numeric values and each aphabet is contiguous -- there is nothing but letters
between A and z. This latter observation is not true of the EBCDIC character set, however, so
this code would convert more than just lettersin EBCDIC.

The standard header <ct ype. h>, described in Appendix B, defines a family of functions that
provide tests and conversions that are independent of character set. For example, the function
t ol ower isa portable replacement for the function | ower shown above. Similarly, the test

c>"'0 & c <="'9
can be replaced by

isdigit(c)

We will use the <ct ype. h> functions from now on.

There is one subtle point about the conversion of characters to integers. The language does not
gpecify whether variables of type char are signed or unsigned quantities. When a char is
converted to ani nt, can it ever produce a negative integer? The answer varies from machine
to machine, reflecting differences in architecture. On some machines achar whose leftmost bit
is 1 will be converted to a negative integer ("sign extension"). On others, a char is promoted
to an int by adding zeros at the left end, and thus is always positive.

The definition of C guarantees that any character in the machin€'s standard printing character
set will never be negative, so these characters will always be positive quantities in expressions.
But arbitrary bit patterns stored in character variables may appear to be negative on some
machines, yet positive on others. For portability, specify si gned or unsi gned if non-character
dataisto be stored in char variables.

Relational expressionslikei > j and logica expressions connected by && and | | are defined
to have value 1 if true, and O if false. Thus the assignment

d=c>"'0 & c <="'9
setsd to 1 if c isadigit, and O if not. However, functions like i sdi gi t may return any non-
zero value for true. In the test part of i f, whi | e, for, etc., true" just means ~"non-zero", so
this makes no difference.
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Implicit arithmetic conversions work much as expected. In genera, if an operator like + or *
that takes two operands (a binary operator) has operands of different types, the ““lower" typeis
promoted to the “higher" type before the operation proceeds. The result is of the integer type.
Section 6 of Appendix A states the conversion rules precisely. If there are no unsi gned
operands, however, the following informal set of rules will suffice:

If either operand is| ong doubl e, convert the other to | ong doubl e.
Otherwise, if either operand is doubl e, convert the other to doubl e.
Otherwise, if either operand isf | oat , convert the other to f | oat .
Otherwise, convert char and short toint.

Then, if either operand is| ong, convert the other to | ong.

Notice that floats in an expression are not automatically converted to doubl e; this is a
change from the original definition. In general, mathematical functions like those in <mat h. h>
will use double precision. The main reason for using f | oat isto save storage in large arrays,
or, less often, to save time on machines where double-precision arithmetic is particularly
expensive.

Conversion rules are more complicated when unsi gned operands are involved. The problem is
that comparisons between signed and unsigned values are machine-dependent, because they
depend on the sizes of the various integer types. For example, suppose that i nt is 16 bits and
| ong is 32 bits. Then -1L < 1U, because 1U, which is an unsi gned int, iS promoted to a
signed |ong. But-1L > 1UL because - 1L is promoted to unsi gned | ong and thus appears
to be alarge positive number.

Conversions take place across assignments; the value of the right side is converted to the type
of the left, which is the type of the result.

A character is converted to an integer, either by sign extension or not, as described above.

Longer integers are converted to shorter ones or to char s by dropping the excess high-order
bits. Thusin

int i;

char c;

i (ol

(o] I ;
the value of c is unchanged. This is true whether or not sign extension is involved. Reversing
the order of assignments might lose information, however.

If xisfloat andi isint,thenx =i andi = x both cause conversions, f | oat toint causes
truncation of any fractiona part. When a doubl e is converted to f | oat , whether the value is
rounded or truncated is implementation dependent.

Since an argument of a function cdl is an expression, type conversion aso takes place when
arguments are passed to functions. In the absence of a function prototype, char and short
become int, and f | oat becomes doubl e. This is why we have declared function arguments to
bei nt and doubl e even when the function is called with char and f | oat .

Findly, explicit type conversions can be forced (" coerced") in any expression, with a unary
operator called acast . In the construction

(type name) expression
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the expression is converted to the named type by the conversion rules above. The precise
meaning of a cast isasif the expression were assigned to a variable of the specified type, which
is then used in place of the whole construction. For example, the library routine sqrt expects a
doubl e argument, and will produce nonsense if inadvertently handled something else. (sqrt is
declared in <mat h. h>.) So if n isan integer, we can use

sqgrt((double) n)
to convert the value of n to doubl e before passing it to sqrt . Note that the cast produces the
value of n in the proper type; n itself is not atered. The cast operator has the same high
precedence as other unary operators, as summarized in the table at the end of this chapter.

If arguments are declared by a function prototype, as the normally should be, the declaration
causes automatic coercion of any arguments when the function is called. Thus, given afunction
prototype for sqrt :

doubl e sqgrt(doubl e)
the cal

root2 = sqrt(2)
coerces the integer 2 into the doubl e value 2. 0 without any need for a cast.

The standard library includes a portable implementation of a pseudo-random number generator
and afunction for initializing the seed; the former illustrates a cast:

unsi gned long int next = 1;

/* rand: return pseudo-randominteger on 0..32767 */
int rand(void)

{
next = next * 1103515245 + 12345;

return (unsigned int)(next/65536) % 32768;
}

/* srand: set seed for rand() */
voi d srand(unsi gned int seed)

{

}
Exercise 2-3. Write a function htoi (s), which converts a string of hexadecima digits

(including an optional 0x or 0X) into its equivalent integer value. The alowable digits are 0
through 9, a through f , and A through F.

2.8 Increment and Decrement Operators

C provides two unusual operators for incrementing and decrementing variables. The increment
operator ++ adds 1 to its operand, while the decrement operator -- subtracts 1. We have
frequently used ++ to increment variables, asin

next = seed;

if (¢c =="\n")
++nl ;

The unusual aspect is that ++ and -- may be used either as prefix operators (before the
variable, asin ++n), or postfix operators (after the variable: n++). In both cases, the effect isto
increment n. But the expression ++n increments n before its value is used, while n++
increments n after its value has been used. This means that in a context where the value is
being used, not just the effect, ++n and n++ are different. If n is 5, then

X = n++
setsx to 5, but

X = ++n;
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Sets x to 6. In both cases, n becomes 6. The increment and decrement operators can only be
applied to variables, an expression like (i +j ) ++ isillegal.

In a context where no value is wanted, just the incrementing effect, asin

if (c =='\n")
nl ++;
prefix and postfix are the same. But there are situations where one or the other is specificaly
called for. For instance, consider the function squeeze(s, c¢), which removes dl occurrences
of the character ¢ fromthe string s.

/* squeeze: delete all c¢c froms */
voi d squeeze(char s[], int c)

=0; s[i] '="\0"; i++4)

Each time a non-c occurs, it is copied into the current j position, and only then is j
incremented to be ready for the next character. Thisis exactly equivalent to

if (s[i]l !'=c¢) {
s[j] = s[i];
j+
}
Another example of a smilar construction comes from the get | i ne function that we wrote in

Chapter 1, where we can replace

if (c =="'\n") {
s[i] =¢;
++i
}
by the more compact
if (c =='\n")
s[i++] = c;

As a third example, consider the standard function strcat (s, t), which concatenates the
string t to the end of string s. strcat assumes that there is enough space in s to hold the
combination. As we have written it, strcat returns no vaue; the standard library version
returns a pointer to the resulting string.

/* strcat: concatenate t to end of s; s nust be big enough */
void strcat(char s[], char t[])

t
int i, j;
|:J:07
while (s[i] !'="'\0") /* find end of s */
i ++;
while ((s[i++] =t[j++]) I="'\0") /* copy t */
}

As each member is copied fromt to s, the postfix ++ is applied to bothi and j to make sure
that they are in position for the next pass through the loop.

Exercise 2-4. Write an dternative version of squeeze(si, s2) that deletes each character in
s1 that matches any character in the string s2.
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Exercise 2-5. Write the function any(s1, s2), which returns the first location in a string s1
where any character from the string s2 occurs, or -1 if s1 contains no characters from s2.
(The standard library function strpbrk does the same job but returns a pointer to the
location.)

2.9 Bitwise Operators

C provides 9x operators for bit manipulation; these may only be applied to integral operands,
that is, char, short, i nt, and | ong, whether signed or unsigned.

&  bitwise AND

| bitwiseinclusive OR

" bitwise exclusve OR

<< |eft shift

>> right shift

~  one's complement (unary)

The bitwise AND operator & is often used to mask off some set of bits, for example

n=n & 0177;
setsto zero al but the low-order 7 bits of n.

The bitwise OR operator | isused to turn bits on:

x = x | SET_ON
setsto onein x the bits that are set to onein SET_ON.

The bitwise exclusive OR operator ~ sets a one in each bit position where its operands have
different bits, and zero where they are the same.

One must distinguish the bitwise operators & and | from the logical operators & and | | , which
imply left-to-right evaluation of a truth value. For example, if x islandy is2,thenx & y is
zerowhilex && y isone.

The shift operators << and >> perform left and right shifts of their left operand by the number
of bit positions given by the right operand, which must be non-negative. Thus x << 2 shifts
the value of x by two positions, filling vacated bits with zero; this is equivalent to
multiplication by 4. Right shifting an unsi gned quantity always fits the vacated bits with zero.
Right shifting a signed quantity will fill with bit signs (" arithmetic shift") on some machines
and with O-bits (""logical shift") on others.

The unary operator ~ yields the one's complement of an integer; that is, it converts each 1-bit
into a 0-bit and vice versa. For example

X =x & ~077
sets the last 9x bits of x to zero. Note that x & ~077 is independent of word length, and is
thus preferable to, for example, x & 0177700, which assumes that x is a 16-bit quantity. The
portable form involves no extra cost, Since ~077 is a constant expression that can be evaluated
at compile time.

As an illustration of some of the bit operators, consider the function get bi t s(x, p, n) that
returns the (right adjusted) n-bit field of x that begins a position p. We assume that bit
position O is a the right end and that n and p are sensble positive vaues. For example,
get bi t s(x, 4, 3) returnsthe three bitsin positions 4, 3 and 2, right-adjusted.

[* getbits: get n bits fromposition p */
unsi gned getbits(unsigned x, int p, int n)



46

return (x >> (p+1l-n)) & ~(~0 << n);
}
The expressonx >> (p+1-n) moves the desired fidd to the right end of the word. ~0 isal 1-

bits; shifting it left n positions with ~0<<n places zeros in the rightmost n bits; complementing
that with ~ makes a mask with onesin the rightmost n bits.

Exercise 2-6. Write a function set bi t s(x, p, n, y) that returns x with the n bits that begin at
position p set to the rightmost n bits of y, leaving the other bits unchanged.

Exercise 2-7. Write a function i nvert (x, p, n) that returns x with the n bits that begin at
position p inverted (i.e., 1 changed into O and vice versa), leaving the others unchanged.

Exercise 2-8. Write a function ri ght r ot (x, n) that returns the value of the integer x rotated
to the right by n positions.

2.10 Assignment Operators and Expressions
An expression such as

i =i + 2
in which the variable on the left Sde is repeated immediately on the right, can be written in the
compressed form

i 4= 2
The operator += is called an assignment operator.

Most binary operators (operators like + that have a left and right operand) have a
corresponding assignment operator op=, where op is one of

+ - * / % << >> & N |
If expr, and expr, are expressions, then

expr . op= expr.
isequivalent to

expri; = (expry) op (expry)
except that expr; is computed only once. Notice the parentheses around expr ,:

X *=y +1
means

X =x* (y +1)
rather than

X =x*y +1
As an example, the function bi t count counts the number of 1-bitsin itsinteger argument.

/* bitcount: count 1 bits in x */
i nt bitcount (unsigned x)

.
int b;

for (b =0; x!=0; x >>=1)
if (x & 01)
b++;
return b;
}
Declaring the argument x to be an unsi gned ensures that when it is right-shifted, vacated bits

will be filled with zeros, not sign bits, regardless of the machine the program is run on.
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Quite apart from conciseness, assgnment operators have the advantage that they correspond
better to the way people think. We say “"add 2toi " or ““increment i by 2", not ““takei , add 2,
then put the result back ini". Thus the expressioni += 2 is preferableto i = i+2. In
addition, for a complicated expression like

yyval [yypv[p3+p4] + yypv[pl]] += 2
the assignment operator makes the code easier to understand, since the reader doesn't have to
check painstakingly that two long expressions are indeed the same, or to wonder why they're
not. And an assignment operator may even help a compiler to produce efficient code.

We have already seen that the assignment statement has a value and can occur in expressions;
the most common exampleis

while ((c = getchar()) != EOF)

The other assignment operators (+=, - =, etc.) can aso occur in expressions, athough this is
less frequent.

In dl such expressions, the type of an assignment expression is the type of its left operand, and
the value is the value after the assignment.

Exercise 2-9. In atwo's complement number system, x & (x- 1) deletes the rightmost 1-bit
inx. Explain why. Use this observation to write a faster version of bi t count .

2.11 Conditional Expressions
The statements

if (a>b)
Z = Q,
el se
zZ = b;
compute in z the maximum of a and b. The conditional expression, written with the ternary
operator ~?:", provides an dternate way to write this and Smilar constructions. In the

expression

expri, ? expr, : exprs
the expression expr; is evauated first. If it is non-zero (true), then the expression expr; is
evaluated, and that is the value of the conditional expression. Otherwise expr; is evaluated, and
that is the value. Only one of expr, and expr; is evaluated. Thus to set z to the maximum of a
and b,

z=(a>h) ? a: b; [* z = max(a, b) */
It should be noted that the conditional expression is indeed an expression, and it can be used
wherever any other expression can be. If expr, and expr; are of different types, the type of the
result is determined by the conversion rules discussed earlier in this chapter. For example, if f
isafloat and nanint, then the expression

(n>0 ?2f : n
isof typefl oat regardless of whether n is positive.

Parentheses are not necessary around the first expression of a conditional expression, since the
precedence of ?: is very low, just above assgnment. They are advisable anyway, however,
since they make the condition part of the expression easier to see.

The conditional expression often leads to succinct code. For example, this loop prints n
elements of an array, 10 per line, with each column separated by one blank, and with each line
(including the last) terminated by a newline.
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for (i =0; i < n; i++)
printf("9%d%", a[i], (i%0==9 || i==n-1) ? '\n" : ' ");
A newline is printed after every tenth element, and after the n-th. All other elements are
followed by one blank. This might look tricky, but it's more compact than the equivaent i f -
el se. Another good exampleis

printf("You have %l itens%.\n", n, n==1 2 "" : "gs");
Exercise 2-10. Rewrite the function | ower , which converts upper case letters to lower case,
with a conditional expression instead of i f - el se.

2.12 Precedence and Order of Evaluation

Table 2.1 summarizes the rules for precedence and associativity of dl operators, including
those that we have not yet discussed. Operators on the same line have the same precedence;
rows are in order of decreasing precedence, so, for example, *, /, and % dl have the same
precedence, which is higher than that of binary + and -. The “operator" () refers to function
cal. The operators - > and . are used to access members of structures; they will be covered in
Chapter 6, along with si zeof (size of an object). Chapter 5 discusses * (indirection through a
pointer) and & (address of an object), and Chapter 3 discusses the comma operator.

| Operators | Associativity
O [ ->. lefttoright |
I~ ++ -- + - * (type) si zeof right to left |
= % | left toright |
+ - | lefttoright |
<< >> | lefttoright |
< <= > >= | lefttoright |
== 1= | Iefttoright |
& | lefttoright |
B lefttoright |
| lefttoright |
&& | left toright |
I lefttoright |
2 Cright to left |
= +=-=*= /= % & "= |= <<= >>= righttoleft |
! | left toright |

Unary & +, -, and * have higher precedence than the binary forms.
Table 2.1: Precedence and Associativity of Operators

Note that the precedence of the bitwise operators &, #, and | fdls below == and ! =. This
impliesthat bit-testing expressions like

if ((x & MASK) == 0) ...
must be fully parenthesized to give proper results.

C, like most languages, does not specify the order in which the operands of an operator are
evaluated. (The exceptionsare &&, | |, ?: , and °, ') For example, in astatement like

x =f() +90);
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f may be evaluated before g or vice versa; thus if either f or g aters a variable on which the
other depends, x can depend on the order of evaluation. Intermediate results can be stored in
temporary variables to ensure a particular sequence.

Similarly, the order in which function arguments are evaluated is not specified, so the
statement

printf("% %l\n", ++n, power(2, n)); /* V\RONG */
can produce different results with different compilers, depending on whether n is incremented
before power iscalled. The solution, of course, isto write

++n;

printf("% %\n", n, power(2, n));
Function calls, nested assgnment statements, and increment and decrement operators cause
“dde effects' - some variable is changed as a by-product of the evaluation of an expression. In
any expression involving side effects, there can be subtle dependencies on the order in which
variables taking part in the expression are updated. One unhappy situation is typified by the
statement

afi] = i++

The question is whether the subscript is the old value of i or the new. Compilers can interpret
this in different ways, and generate different answers depending on their interpretation. The
standard intentionally leaves most such matters unspecified. When side effects (assignment to
variables) take place within an expression is left to the discretion of the compiler, since the best
order depends strongly on machine architecture. (The standard does specify that dl sde effects
on arguments take effect before a function is called, but that would not help in the cdl to
printf above.)

The moral is that writing code that depends on order of evaluation is a bad programming
practice in any language. Naturaly, it is necessary to know what things to avoid, but if you
don't know how they are done on various machines, you won't be tempted to take advantage of
a particular implementation.
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Chapter 3 - Control Flow

The control-flow of a language specify the order in which computations are performed. We
have aready met the most common control-flow constructions in earlier examples, here we
will complete the set, and be more precise about the ones discussed before.

3.1 Statements and Blocks

An expressonsuchasx = 0ori++orprintf(...) becomesastatement when it isfollowed
by asemicolon, asin

X = 0;

i ++;

printf(...);
In C, the semicolon is a statement terminator, rather than a separator as it is in languages like
Pascal.

Braces { and } are used to group declarations and statements together into a compound
statement, or block, so that they are syntactically equivalent to a single statement. The braces
that surround the statements of a function are one obvious example; braces around multiple
statements after ani f, el se, whi | e, or f or are another. (Variables can be declared insgde any
block; we will talk about this in Chapter 4.) There is no semicolon after the right brace that
ends a block.

3.2 1f-Else

Thei f - el se statement is used to express decisions. Formally the syntax is

i f (expression)
st at ement ,
el se
st at erment ,

where the el se part is optional. The expression is evaluated; if it is true (that is, if expression
has a non-zero value), statement; is executed. If it is fase (expression is zero) and if there isan
el se part, statement; is executed instead.

Sinceani f teststhe numeric value of an expression, certain coding shortcuts are possible. The
most obvious iswriting

i f (expression)

instead of

if (expression != 0)
Sometimes thisis natural and clear; at other times it can be cryptic.
Because the el se part of ani f - el se is optional,there is an ambiguity when an else if omitted

from anested i f sequence. This is resolved by associating the el se with the closest previous
el se-lessi f . For example, in

if (n >0
if (a>Db)
zZ = a
el se
z = b;

the el se goes to the inner i f, as we have shown by indentation. If that isn't what you want,
braces must be used to force the proper association:
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if (n>0) {

if (a>bh)

Z = a,

}
el se

z = b;

The ambiguity is especialy pernicious in situations like this:

if (n>0)

for (i =0; i <n; i++)

if (s[i] >0) {

printf("...")
return i;

el se } /* WWRONG */
printf("error -- n is negative\n");
The indentation shows unequivocally what you want, but the compiler doesn't get the message,
and associates the el se with theinner i f . Thiskind of bug can be hard to find; it's a good idea
to use braces when there are nested i f s.

By the way, notice that thereisa semicolon after z = ain

if (a>Db)
zZ = a;
el se
zZ = b;

This is because grammatically, a statement follows thei f, and an expression statement like ™z
= a; " isaways terminated by a semicolon.

3.3 Else-If

The construction

i f (expression)
st at ement

else if (expression)
st at ement

else if (expression)
st at ement

else if (expression)
st at ement

el se
st at ement

occurs so often that it is worth a brief separate discussion. This sequence of i f statements is
the most general way of writing a multi-way decision. The expressions are evaluated in order;
if an expression is true, the statement associated with it is executed, and this terminates the
whole chain. As aways, the code for each statement is either a single statement, or a group of
them in braces.

The last el se part handles the ““none of the above" or default case where none of the other
conditions is satisfied. Sometimes there is no explicit action for the default; in that case the
trailing

el se
st at enent

can be omitted, or it may be used for error checking to catch an ““impossible” condition.

To illustrate a three-way decision, here is a binary search function that decides if a particular
vaue x occurs in the sorted array v. The elements of v must be in increasing order. The
function returns the position (a number between 0 and n- 1) if x occursin v, and -1 if not.
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Binary search first compares the input value x to the middle element of the array v. If x isless
than the middle value, searching focuses on the lower hdf of the table, otherwise on the upper
half. In either case, the next step is to compare x to the middle element of the selected hdf.
This process of dividing the range in two continues until the value is found or the range is

empty.

/* binsearch: find x in v[0] <= vVv[]l] <= ... <=v[n-1] */
int binsearch(int x, int v[], int n)
{

int low, high, md;

| ow = O;

high = n - 1;

while (low <= high) {

m d = (| ow+hi gh)/2;

if (x <v[md])
high = md + 1;

else if (x >v[md])
low = md + 1;

el se /* found natch */
return md;

return -1; /* no match */
}
The fundamental decision is whether x isless than, greater than, or equal to the middle element

v[mi d] at each step; thisisanatural for el se-i f.

Exercise 3-1. Our binary search makes two tests insde the loop, when one would suffice (at
the price of more tests outside.) Write a version with only one test inside the loop and measure
the difference in run-time.

3.4 Switch

The swi t ch statement is a multi-way decision that tests whether an expression matches one of
anumber of constant integer values, and branches accordingly.

switch (expression) {
case const-expr: statements
case const-expr: statements
default: statenents

}
Each case is labeled by one or more integer-valued constants or constant expressions. If a case

matches the expression value, execution starts at that case. All case expressions must be
different. The case labeled def aul t is executed if none of the other cases are satisfied. A
def aul t is optional; if it isn't there and if none of the cases match, no action at dl takes place.
Cases and the default clause can occur in any order.

In Chapter 1 we wrote a program to count the occurrences of each digit, white space, and al
other characters, usng asequenceof if ... else if ... else.Hereisthe same program
withaswi t ch:

#i ncl ude <stdio. h>

main() /* count digits, white space, others */
int ¢, i, nwhite, nother, ndigit[10];
nwhite = nother = 0;
for (i =0; i < 10; i++)

ndigit[i] = 0;
while ((c = getchar()) !'= EOF) {
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switch (c) {
case '0': case '1l': case '2': case '3': case '4':
case '5': case '6': case '7': case '8 : case '9':
ndigit{c-'0"]++;
br eak;
case '
case '\n':
case '"\t':
nwhi t e++;
br eak;
defaul t:
not her ++;
br eak;

}

b o

printf("digits =");

for (i =0; i < 10; i++)
printf(" %", ndigit[i]);

printf(", white space = %, other = %l\n",
nwhi te, nother);

return O;

}
The br eak statement causes an immediate exit from the swi t ch. Because cases serve just as

labels, after the code for one case is done, execution falls through to the next unless you take
explicit action to escape. br eak and r et ur n are the most common ways to leave aswi t ch. A
br eak statement can aso be used to force an immediate exit from whi | e, f or, and do loops,
aswill be discussed later in this chapter.

Falling through cases is a mixed blessing. On the positive side, it alows several cases to be
attached to a single action, as with the digits in this example. But it dso implies that normally
each case must end with a br eak to prevent faling through to the next. Faling through from
one case to another is not robust, being prone to disintegration when the program is modified.
With the exception of multiple labels for a sngle computation, fall-throughs should be used
sparingly, and commented.

As a matter of good form, put abr eak after the last case (the def aul t here) even though it's
logically unnecessary. Some day when another case gets added at the end, this bit of defensive
programming will save you.

Exercise 3-2. Write afunction escape(s, t) that converts characters like newline and tab into
vigble escape sequences like\n and \'t as it copies the string t to s. Use aswitch. Write a
function for the other direction as well, converting escape sequences into the real characters.

3.5 Loops- Whileand For

We have aready encountered the whi | e and f or loops. In

whi | e (expression)
st at enent
the expression is evaluated. If it is non-zero, statement is executed and expression is re-
evaluated. This cycle continues until expression becomes zero, a which point execution
resumes after statement.

Thefor statement
for (expri; expr, exprs)

st at enent
isequivalent to

expr i;
while (expr.) {



st at enent
expr s;
}
except for the behaviour of cont i nue, which isdescribed in Section 3.7.

Grammatically, the three components of a f or loop are expressions. Most commonly, expr;
and expr; are assignments or function cals and expr; is a relational expression. Any of the
three parts can be omitted, although the semicolons must remain. If expr, or exprs is omitted, it
is amply dropped from the expansion. If the test, expr,, IS not present, it is taken as
permanently true, so

for (;;) {

}
isan “infinite" loop, presumably to be broken by other means, such asabr eak or r et ur n.

Whether to use whi | e or f or islargely a matter of personal preference. For example, in

while ((c = getchar()) ==" " || ¢ =="\n" || ¢ ="\t")
; /* skip white space characters */
thereisno initialization or re-initialization, so the whi | e ismost natural.

Thef or is preferable when there is a smple initidization and increment since it keeps the loop
control statements close together and visible at the top of the loop. Thisis most obviousin

for (i =0; i < n; i++)

which is the C idiom for processing the first n elements of an array, the analog of the Fortran
DO loop or the Pascal for. The analogy is not perfect, however, since the index variable i
retains its value when the loop terminates for any reason. Because the components of the f or
are arbitrary expressions, f or loops are not restricted to arithmetic progressions. Nonetheless,
it is bad style to force unrelated computations into the initialization and increment of a f or,
which are better reserved for loop control operations.

As a larger example, here is another version of at oi for converting a string to its numeric
equivalent. This one is dightly more general than the one in Chapter 2; it copes with optional
leading white space and an optional + or - sign. (Chapter 4 shows at of , which does the same
conversion for floating-point numbers.)

The structure of the program reflects the form of the input:

skip white space, if any
get sign, if any
get integer part and convert it

Each step does its part, and leaves things in a clean state for the next. The whole process
terminates on the first character that could not be part of a number.

#i ncl ude <ctype. h>

/* atoi: convert s to integer; version 2 */
int atoi (char s[])

{

int i, n, sign;

for (i = 0; isspace(s[i]); i++) [* skip white space */
sign,: (sf[i] =="-") ?2 -1: 1

if (s[i] =="+" || s[i] =="-") [* skip sign */

i ++;
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for (n =0; isdigit(s[i]); i++)
n=10 * n+ (s[i] - '0");
return sign * n;

}
The standard library provides a more elaborate function strtol for conversion of strings to

long integers; see Section 5 of Appendix B.

The advantages of keeping loop control centralized are even more obvious when there are
several nested loops. The following function is a Shell sort for sorting an array of integers. The
basic idea of this sorting agorithm, which was invented in 1959 by D. L. Shell, isthat in early
stages, far-apart elements are compared, rather than adjacent ones as in smpler interchange
sorts. This tends to eiminate large amounts of disorder quickly, so later stages have less work
to do. The interval between compared elements is gradually decreased to one, a which point
the sort effectively becomes an adjacent interchange method.

/* shellsort: sort v[O]...v[n-1] into increasing order */
voi d shellsort(int v[], int n)

{

int gap, i, j, tenmp;
for (gap = n/2; gap > 0; gap /= 2)
for (i = gap; i < n; i ++) _ _
for (j=i-gap; j>=0 & v[j]>Vv[]j+gap]; j-=gap) {
temp = v[j];
vijl = v[j+gap];

v[j +gap] = tenp;
} }
There are three nested loops. The outermost controls the gap between compared e ements,
shrinking it from n/ 2 by a factor of two each pass until it becomes zero. The middle loop steps
along the elements. The innermost loop compares each pair of elements that is separated by
gap and reverses any that are out of order. Since gap is eventually reduced to one, al elements
are eventualy ordered correctly. Notice how the generality of the f or makes the outer loop fit
in the same form as the others, even though it is not an arithmetic progression.

One finad C operator is the comma ™, ", which most often finds use in the f or statement. A
pair of expressions separated by a comma is evaluated left to right, and the type and value of
the result are the type and vaue of the right operand. Thus in a for statement, it is possible to
place multiple expressions in the various parts, for example to process two indices in paralld.
Thisisillustrated in the function r ever se('s) , which reverses the string s in place.

#i ncl ude <string. h>

/* reverse: reverse string s in place */
void reverse(char s[])

. o
int c, i, j;
for (i =0, j =strlen(s)-1; i <j; i++ j--) {
c =s[i];
s[i] = s[j];
s[j] c;

}
The commas that separate function arguments, variables in declarations, etc., are not comma

operators, and do not guarantee left to right evaluation.

Comma operators should be used sparingly. The most suitable uses are for constructs strongly
related to each other, as in the for loop in reverse, and in macros where a multistep
computation has to be a single expression. A comma expression might also be appropriate for
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the exchange of eements in reverse, where the exchange can be thought of a single
operation:
for (i =0, j =strlen(s)-1; i <j; i++, j--)
c =s[i], s[i] =s[j], s[j] =c¢;
Exercise 3-3. Write a function expand(s1, s2) that expands shorthand notations like a- z in
the string s1 into the equivalent complete list abce. . . xyz ins2. Allow for letters of either case
and digits, and be prepared to handle cases like a- b- ¢ and a- z0-9 and - a- z. Arrange that a
leading or trailing - istaken literaly.

3.6 Loops - Do-While

As we discussed in Chapter 1, the whi |l e and f or loops test the termination condition at the
top. By contrast, the third loop in C, the do- whi | e, tests a the bottom after making each pass
through the loop body; the body is always executed at |east once.

The syntax of the do is

do
st at enent
whi | e (expression);
The statement is executed, then expression is evaluated. If it is true, statement is evaluated
again, and so on. When the expression becomes false, the loop terminates. Except for the sense
of the test, do- whi | e is equivalent to the Pascal r epeat - unti | Statement.

Experience shows that do-whi | e is much less used than whi | e and f or . Nonetheless, from
time to time it is valuable, as in the following function i t oa, which converts a number to a
character string (the inverse of atoi). The job is dightly more complicated than might be
thought at first, because the easy methods of generating the digits generate them in the wrong
order. We have chosen to generate the string backwards, then reverse it.

/* itoa: convert n to characters in s */
void itoa(int n, char s[])

t
int i, sign;
if ((sign =n) <0) [/* record sign */
n = -n; /* make n positive */
i = 0;
do { /* generate digits in reverse order */
s[i++] = n %10 + '0"; [/* get next digit */
} while ((n /= 10) > 0); /* delete it */
if (sign < 0)
s[i++] ="
s[i] ="\0";
reverse(s);
}

The do-whi | e iS necessary, or a least convenient, since at least one character must be
installed in the array s, even if n is zero. We aso used braces around the single statement that
makes up the body of the do- whi | e, even though they are unnecessary, so the hasty reader
will not mistake the whi | e part for the beginning of a whi | e loop.

Exercise 3-4. In a two's complement number representation, our version of i toa does not
handle the largest negative number, that is, the vaue of n equal to -(2""%?1), Explain why not.
Modify it to print that value correctly, regardless of the machine on which it runs.

Exercise 3-5. Write the function itob(n, s, b) that converts the integer n into a base b
character representation in the string s. In particular, itob(n,s, 16) formats s as a
hexadecimal integer in's.
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Exercise 3-6. Write a version of i t oa that accepts three arguments instead of two. The third
argument is a minimum field width; the converted number must be padded with blanks on the
left if necessary to make it wide enough.

3.7 Break and Continue

It is sometimes convenient to be able to exit from a loop other than by testing a the top or
bottom. The break statement provides an early exit from for, whil e, and do, just as from
swi tch. A break causesthe innermost enclosing loop or swi t ch to be exited immediately.

The following function, tri m removes trailing blanks, tabs and newlines from the end of a
string, using a br eak to exit from aloop when the rightmost non-blank, non-tab, non-newline
isfound.

/* trim renove trailing blanks, tabs, new ines */
int trinm(char s[])
{

int n;
for (n = strlen(s)-1;, n >=0; n--)
if (s[n] '=" " && s[n] !'="'"\t'" && s[n] !="\n")
br eak;
s[n+l] = '"\0";
return n;

}
strlen returns the length of the string. The f or loop starts at the end and scans backwards

looking for the first character that is not a blank or tab or newline. The loop is broken when
one is found, or when n becomes negative (that is, when the entire string has been scanned).
Y ou should verify that this is correct behavior even when the string is empty or contains only
white space characters.

The cont i nue statement is related to br eak, but less often used; it causes the next iteration of
the enclosing f or, whi | e, or do loop to begin. In the whi | e and do, this means that the test
part is executed immediately; in the f or, control passes to the increment step. The cont i nue
statement applies only to loops, not to switch. A continue indde a switch indgde a loop
causes the next loop iteration.

As an example, this fragment processes only the non-negative elements in the array a; negative
values are skipped.

for (i =0; i <n; i++)
if (a[i] < 0) /* skip negative elenments */
conti nue;
. /* do positive elenents */

The cont i nue statement is often used when the part of the loop that follows is complicated, so
that reversing atest and indenting another level would nest the program too deeply.

3.8 Goto and labels

C provides the infinitely-abusable got o statement, and labels to branch to. Formaly, the got o
statement is never necessary, and in practice it is amost aways easy to write code without it.
We have not used got o in this book.

Nevertheless, there are a few situations where got os may find a place. The most common is to
abandon processing in some deeply nested structure, such as breaking out of two or more
loops a once. The break statement cannot be used directly since it only exits from the
innermost loop. Thus:

for (... )
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for (... ) {

}+.(disaster)
goto error;

err 0;’ .
/* clean up the ness */
This organization is handy if the error-handling code is non-trivial, and if errors can occur in

severa places.

A label has the same form as a variable name, and is followed by a colon. It can be attached to
any statement in the same function as the got 0. The scope of alabel isthe entire function.

As another example, consider the problem of determining whether two arrays a and b have an
element in common. One possibility is

for (i =0; i < n; i++4)
for (j =0; j <m j+4)
if (a[i] ==b[j])
goto found;
/* didn't find any conmon el ement */

foundr
[* got one: a[i] == Db[j] */

Code involving a got o can aways be written without one, though perhaps at the price of some
repeated tests or an extra variable. For example, the array search becomes

found = 0;
for (i = Q; i < n & !'found; i++)

for (j =0; ] <m&& !found; j++)
if (a[i] == Db[j])
found = 1;
i f (found)
[* got one: a[i-1] == b[j-1] */

else”.
/* didn't find any conmon el ement */

With a few exceptions like those cited here, code that relies on got o statements is generaly
harder to understand and to maintain than code without got os. Although we are not dogmatic
about the matter, it does seem that got o statements should be used rarely, if at all.



59

Chapter 4 - Functions and Program
Structure

Functions break large computing tasks into smaller ones, and enable people to build on what
others have done instead of starting over from scratch. Appropriate functions hide details of
operation from parts of the program that don't need to know about them, thus clarifying the
whole, and easing the pain of making changes.

C has been designed to make functions efficient and easy to use; C programs generally consist
of many small functions rather than a few big ones. A program may reside in one or more
source files. Source files may be compiled separately and loaded together, aong with
previously compiled functions from libraries. We will not go into that process here, however,
since the details vary from system to system.

Function declaration and definition is the area where the ANSI standard has made the most
changes to C. Aswe saw first in Chapter 1, it is now possible to declare the type of arguments
when a function is declared. The syntax of function declaration aso changes, so that
declarations and definitions match. This makes it possible for a compiler to detect many more
errors than it could before. Furthermore, when arguments are properly declared, appropriate
type coercions are performed automatically.

The standard clarifies the rules on the scope of names; in particular, it requires that there be
only one definition of each external object. Initialization is more general: automatic arrays and
structures may now be initialized.

The C preprocessor has also been enhanced. New preprocessor facilities include a more
complete set of conditional compilation directives, a way to create quoted strings from macro
arguments, and better control over the macro expansion process.

4.1 Basics of Functions

To begin with, let us design and write a program to print each line of its input that contains a
particular ~“pattern” or string of characters. (Thisis a special case of the UNIX program gr ep.)
For example, searching for the pattern of letters ““oul d" in the set of lines

Ah Love! could you and I with Fate conspire
To grasp this sorry Schene of Things entire,
Wbul d not we shatter it to bits -- and then
Re-nmould it nearer to the Heart's Desire!

will produce the output

Ah Love! could you and I with Fate conspire
Woul d not we shatter it to bits -- and then
Re-nould it nearer to the Heart's Desirel

The job fals neatly into three pieces:

while (there's another |ine)
if (the line contains the pattern)
print it

Although it's certainly possible to put the code for dl of thisin nai n, a better way is to use the
structure to advantage by making each part a separate function. Three smal pieces are better
to dea with than one big one, because irrelevant details can be buried in the functions, and the
chance of unwanted interactions is minimized. And the pieces may even be useful in other
programs.
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“"While there's another line" is get I i ne, afunction that we wrote in Chapter 1, and “print it" is
printf, which someone has already provided for us. This means we need only write a routine
to decide whether the line contains an occurrence of the pattern.

We can solve that problem by writing a function st ri ndex(s, t) that returns the position or
index in the string s where the string t begins, or - 1 if s does not contain t . Because C arrays
begin at position zero, indexes will be zero or positive, and so a negative vaue like -1 is
convenient for signaling failure. When we later need more sophisticated pattern matching, we
only have to replace st ri ndex; the rest of the code can remain the same. (The standard library
provides afunction st rstr that isSmilar to st ri ndex, except that it returns a pointer instead
of an index.)

Given this much design, filling in the details of the program is straightforward. Here is the
whole thing, so you can see how the pieces fit together. For now, the pattern to be searched
for is aliteral string, which is not the most general of mechanisms. We will return shortly to a
discussion of how to initidize character arrays, and in Chapter 5 will show how to make the
pattern a parameter that is set when the program is run. There is dso a dightly different
version of get | i ne; you might find it instructive to compare it to the one in Chapter 1.

#i ncl ude <stdio. h>
#defi ne MAXLI NE 1000 /* maxi muminput line I ength */

int getline(char line[], int max)
int strindex(char source[], char searchfor[]);

char pattern[] = "ould"; /* pattern to search for */
/* find all lines matching pattern */
mai n()

char |ine[ MAXLI NE] ;
int found = O;

while (getline(line, MAXLINE) > 0)
if (strindex(line, pattern) >= 0) {
printf("9%", |ine);
f ound++;

return found;

}

/* getline: get lineinto s, return length */
int getline(char s[], int lim

int ¢, i;

i = 0;

while (--1im> 0 & (c=getchar()) !'= EOF & ¢ !'="\n")
s[i++] = c;

if (c =="'\n")
s[i++] = c;

s[i] ="\0";

return i;

}

/* strindex: returnindex of t ins, -1 if none */
int strindex(char s[], char t[])

r
int i, j, k;

for (i =0; s[i] !'="\0"; i++) {
for (j=i, k=0; t[k]!="\0" && s[j]==t[Kk]; |j++ k++)
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if (k>0 & t[k] == '\0")

return i;
return -1;

}
Each function definition has the form

return-type function-nane(argument decl arations)

decl arati ons and statenents

}
Various parts may be absent; aminimal function is

dumy() {}
which does nothing and returns nothing. A do-nothing function like this is sometimes useful as

aplace holder during program development. If the return type is omitted, i nt is assumed.

A program is just a set of definitions of variables and functions. Communication between the
functions is by arguments and values returned by the functions, and through external variables.
The functions can occur in any order in the source file, and the source program can be split
into multiple files, so long as no function is split.

The r et urn statement is the mechanism for returning a value from the called function to its
caler. Any expression can follow r et urn:

return expr essi on;
The expression will be converted to the return type of the function if necessary. Parentheses
are often used around the expression, but they are optional.

The cdling function is free to ignore the returned value. Furthermore, there need to be no
expression after r et ur n; in that case, no vaue is returned to the caller. Control aso returns to
the caller with no value when execution “fals off the end" of the function by reaching the
closing right brace. It is not illegal, but probably a sign of trouble, if afunction returns a value
from one place and no value from another. In any case, if a function fails to return a vaue, its
“value" is certain to be garbage.

The pattern-searching program returns a status from mai n, the number of matches found. This
valueis available for use by the environment that called the program

The mechanics of how to compile and load a C program that resides on multiple source files
vary from one system to the next. On the UNIX system, for example, the cc command
mentioned in Chapter 1 does the job. Suppose that the three functions are stored in three files
caled mai n. ¢, getline. ¢, and stri ndex. c. Then the command

cc main.c getline.c strindex.c
compiles the three files, placing the resulting object code in files mai n. o, getline. o, and
stri ndex. o, then loads them dl into an executable file called a. out . If thereis an error, say in
mai n. ¢, the file can be recompiled by itself and the result loaded with the previous object files,
with the command

cCc main.c getline.o strindex.o
The cc command uses the . ¢" versus . 0" naming convention to distinguish source files
from object files.

Exercise 4-1. Write the function st ri ndex(s, t) which returns the position of the rightmost
occurrence of t in's, or - 1 if thereisnone.
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4.2 Functions Returning Non-integers

So far our examples of functions have returned either no vaue (voi d) or anint. What if a
function must return some other type? many numerica functions like sqrt, sin, and cos
return doubl e; other specialized functions return other types. To illustrate how to deal with
this, let us write and use the function at of (s) , which converts the string s to its double-
precision floating-point equivalent. at of if an extension of at oi , which we showed versions of
in Chapters 2 and 3. It handles an optional sign and decimal point, and the presence or absence
of either part or fractional part. Our version is not a high-quality input conversion routine; that
would take more space than we care to use. The standard library includes an at of ; the header
<stdl i b. h> declaresit.

First, at of itself must declare the type of vaue it returns, since it is not i nt . The type name
precedes the function name:

#i ncl ude <ctype. h>

/* atof: convert string s to double */
doubl e atof (char s[])

{
doubl e val, power;
int i, sign;
for (i = 0; isspace(s[i]); i++) [* skip white space */
sign = (s[i] =="-") ?2-1: 1
if o (s[i] =="+ [] s[i] =="-")
i ++;
for (val = 0.0; isdigit(s[i]); i++)
val = 10.0 * val + (s[i] - "0");
if (s[i] ==".")
i ++;
for (power = 1.0; isdigit(s[i]); i++) {
val = 10.0 * val + (s[i] - "0");
power *= 10;
}
return sign * val / power;
}

Second, and just as important, the caling routine must know that at of returns a non-int value.
One way to ensure this is to declare at of explicitly in the caling routine. The declaration is
shown in this primitive calculator (barely adequate for check-book balancing), which reads one
number per line, optionally preceded with a sign, and adds them up, printing the running sum
after each input:

#i ncl ude <stdi o. h>
#def i ne MAXLI NE 100

/* rudimentary cal cul ator */
mai n()

doubl e sum atof (char []);
char |ine[ MAXLI NE] ;
int getline(char line[], int max);

sum = O;

while (getline(line, MAXLINE) > 0)
printf("\t%\n", sum+= atof(line));

return O;

}
The declaration



63

doubl e sum atof(char []);
says that sumisadoubl e variable, and that at of isafunction that takes one char [] argument
and returns adoubl e.

The function at of must be declared and defined consistently. If at of itself and the call to it in
mai n have inconsistent types in the same source file, the error will be detected by the compiler.
But if (asis more likely) at of were compiled separately, the mismatch would not be detected,
at of would return adoubl e that mai n would treat as an i nt , and meaningless answers would
result.

In the light of what we have said about how declarations must match definitions, this might
seem surprising. The reason a mismatch can happen is that if there is no function prototype, a
function isimplicitly declared by itsfirst appearance in an expression, such as

sum += atof (I i ne)
If a name that has not been previoudy declared occurs in an expression and is followed by a
left parentheses, it is declared by context to be a function name, the function is assumed to
return an int, and nothing is assumed about its arguments. Furthermore, if a function
declaration does not include arguments, asin

doubl e atof ();
that too is taken to mean that nothing is to be assumed about the arguments of at of ; dl
parameter checking is turned off. This special meaning of the empty argument lis is intended
to permit older C programs to compile with new compilers. But it's a bad idea to use it with
new C programs. If the function takes arguments, declare them; if it takes no arguments, use
voi d.

Given at of , properly declared, we could write at oi (convert astring toi nt ) interms of it:

/* atoi: convert string s to integer using atof */
int atoi (char s[])

doubl e atof (char s[]);

return (int) atof(s);
}
Notice the structure of the declarations and the return statement. The value of the expression

n

return expr essi on;
is converted to the type of the function before the return is taken. Therefore, the value of at of ,
adoubl e, is converted automatically to i nt when it appearsin thisr et ur n, since the function
atoi returnsanint. This operation does potentionally discard information, however, so some
compilers warn of it. The cast states explicitly that the operation is intended, and suppresses
any warning.

Exercise 4-2. Extend at of to handle scientific notation of the form

123. 45e- 6
where a floating-point number may be followed by e or E and an optionally signed exponent.

4.3 External Variables

A C program consists of a set of external objects, which are either variables or functions. The
adjective “externd" is used in contrast to internal”, which describes the arguments and
variables defined insde functions. External variables are defined outside of any function, and
are thus potentionally available to many functions. Functions themselves are aways external,
because C does not alow functions to be defined inside other functions. By default, external
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variables and functions have the property that al references to them by the same name, even
from functions compiled separately, are references to the same thing. (The standard calls this
property external linkage) In this sense, externa variables are analogous to Fortran
COMMON blocks or variables in the outermost block in Pascal. We will see later how to
define external variables and functions that are visible only within a single source file. Because
external variables are globally accessible, they provide an alternative to function arguments and
return values for communicating data between functions. Any function may access an externa
variable by referring to it by name, if the name has been declared somehow.

If alarge number of variables must be shared among functions, externa variables are more
convenient and efficient than long argument lists. As pointed out in Chapter 1, however, this
reasoning should be applied with some caution, for it can have a bad effect on program
structure, and lead to programs with too many data connections between functions.

External variables are aso useful because of their greater scope and lifetime. Automatic
variables are internal to a function; they come into existence when the function is entered, and
disappear when it is left. External variables, on the other hand, are permanent, so they can
retain values from one function invocation to the next. Thus if two functions must share some
data, yet neither calls the other, it is often most convenient if the shared data is kept in external
variables rather than being passed in and out via arguments.

Let us examine this issue with a larger example. The problem is to write a calculator program
that provides the operators +, -, * and / . Because it is easier to implement, the calculator will
use reverse Polish notation instead of infix. (Reverse Polish notation is used by some pocket
calculators, and in languages like Forth and Postscript.)

In reverse Polish notation, each operator follows its operands; an infix expression like

(1-2) * (4 +5)
is entered as

12-45+*
Parentheses are not needed; the notation is unambiguous as long as we know how many
operands each operator expects.

The implementation is smple. Each operand is pushed onto a stack; when an operator arrives,
the proper number of operands (two for binary operators) is popped, the operator is applied to
them, and the result is pushed back onto the stack. In the example above, for instance, 1 and 2
are pushed, then replaced by their difference, -1. Next, 4 and 5 are pushed and then replaced
by their sum, 9. The product of -1 and 9, which is -9, replaces them on the stack. The value on
the top of the stack is popped and printed when the end of the input line is encountered.

The structure of the program is thus a loop that performs the proper operation on each
operator and operand as it appears:

whi |l e (next operator or operand is not end-of-file indicator)
i f (nunber)
push it
else if (operator)
pop oper ands
do operation
push result
else if (newine)
pop and print top of stack
el se
error
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The operation of pushing and popping a stack are trivia, but by the time error detection and
recovery are added, they are long enough that it is better to put each in a separate function
than to repeat the code throughout the whole program. And there should be a separate
function for fetching the next input operator or operand.

The main design decision that has not yet been discussed is where the stack is, that is, which
routines access it directly. On possibility is to keep it in mai n, and pass the stack and the
current stack position to the routines that push and pop it. But mai n doesn't need to know
about the variables that control the stack; it only does push and pop operations. So we have
decided to store the stack and its associated information in external variables accessible to the
push and pop functions but not to mai n.

Trandating this outline into code is easy enough. If for now we think of the program as
existing in one sourcefile, it will ook like this:

#i ncl udeS
#def i neS

function declarations for mai n

main() { ...}

external variables for push and pop

voi d push( double f) { ... }
doubl e pop(void) { ... }

int getop(char s[]) { ... }
routines called by get op

Later we will discuss how this might be split into two or more source files.

The function nai n isaloop containing a big swi t ch on the type of operator or operand; thisis
amore typical use of swi t ch than the one shown in Section 3.4.

#i ncl ude <stdi o. h>
#include <stdlib.h> /* for atof() */

#define MAXOP 100 /* max size of operand or operator */
#define NUMBER '0' /* signal that a nunber was found */

int getop(char []);
voi d push(doubl e);
doubl e pop(void);

/* reverse Polish cal culator */

mai n()
int type;
doubl e op2;

char s[ MAXOP];

while ((type = getop(s)) !'= EOF) {
switch (type) {
case NUMBER:
push(atof (s));
br eak;
case '+':
push(pop() + pop());
br eak;
case '*':

push(pop() * pop());
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br eak;
case '-':
op2 = pop();
push(pop() - op2);
br eak;
case '/':
op2 = pop();
if (op2 !'=10.0)
push(pop() / op2);

el se
printf("error: zero divisor\n");

br eak;

case '\n':
printf("\t%8g\n", pop());
br eak;

defaul t:
printf("error: unknown command %\n", s);
br eak;

}

return O;

}
Because + and * are commutative operators, the order in which the popped operands are
combined isirrelevant, but for - and / the left and right operand must be distinguished. In

push(pop() - pop()); /* VRONG */
the order in which the two cdls of pop are evauated is not defined. To guarantee the right
order, it is necessary to pop the first value into atemporary variable as we did in mai n.

#defi ne MAXVAL 100 /* maxi mum depth of val stack */

int sp = 0; /* next free stack position */
doubl e val [ MAXVAL]; [/* value stack */

/* push: push f onto value stack */
voi d push(doubl e f)

if (sp < MAXVAL)
val [sp++] = f;
el se
printf("error: stack full, can't push %g\n", f);

}

/* pop: pop and return top value fromstack */
doubl e pop(voi d)

if (sp>0)
return val[--sp];

el se {
printf("error: stack enpty\n");
return 0.0;

}
}
A variable is external if it is defined outside of any function. Thus the stack and stack index

that must be shared by push and pop are defined outside these functions. But mai n itself does
not refer to the stack or stack position - the representation can be hidden.

Let us now turn to the implementation of get op, the function that fetches the next operator or
operand. The task is easy. Skip blanks and tabs. If the next character is not a digit or a
hexadecimal point, return it. Otherwise, collect a string of digits (which might include a
decimal point), and return NUVBER, the signal that a number has been collected.

#i ncl ude <ctype. h>
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int getch(void);
voi d ungetch(int);

/* getop: get next character or numeric operand */
int getop(char s[])
{

int i, c;

while ((s[0] =c¢ =getch()) ==" " || ¢ =="\t")

s[1] = "\0';

if (lisdigit(c) & c !'=".")
return c; /* not a nunber */

i = 0;

if (isdigit(c)) [* collect integer part */
while (isdigit(s[++i] = c = getch()))

if (c == ) /* collect fraction part */
while (isdigit(s[++i] = c = getch()))

s[i] ='\0;

if (c !'= EOF)

unget ch(c);
return NUVBER,
}
What are get ch and unget ch? It is often the case that a program cannot determine that it has

read enough input until it has read too much. One instance is collecting characters that make
up anumber: until the first non-digit is seen, the number is not complete. But then the program
has read one character too far, a character that it is not prepared for.

The problem would be solved if it were possible to ““un-read” the unwanted character. Then,
every time the program reads one character too many, it could push it back on the input, so the
rest of the code could behave as if it had never been read. Fortunately, it's easy to smulate un-
getting a character, by writing a pair of cooperating functions. get ch delivers the next input
character to be considered; unget ch will return them before reading new input.

How they work together is smple. unget ch puts the pushed-back characters into a shared
buffer -- a character array. get ch reads from the buffer if there is anything else, and cdls
get char if the buffer is empty. There must also be an index variable that records the position
of the current character in the buffer.

Since the buffer and the index are shared by get ch and unget ch and must retain their values
between calls, they must be external to both routines. Thus we can write get ch, unget ch, and
their shared variables as:

#def i ne BUFSI ZE 100

char buf [ BUFSI ZE] ; /* buffer for ungetch */
int bufp = 0; /* next free position in buf */

int getch(void) /* get a (possibly pushed-back) character */

return (bufp > 0) ? buf[--bufp] : getchar();
}

voi d ungetch(int c) /* push character back on input */

if (bufp >= BUFSI ZE)

printf("ungetch: too many characters\n");
el se

buf [ buf p++] = c;
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The standard library includes a function unget ch that provides one character of pushback; we
will discuss it in Chapter 7. We have used an array for the pushback, rather than a single
character, to illustrate a more general approach.

Exercise 4-3. Given the basic framework, it's straightforward to extend the calculator. Add the
modulus (%) operator and provisions for negative numbers.

Exercise 4-4. Add the commands to print the top elements of the stack without popping, to
duplicate it, and to swap the top two elements. Add a command to clear the stack.

Exercise 4-5. Add access to library functions like sin, exp, and pow. See <math.h> in
Appendix B, Section 4.

Exercise 4-6. Add commands for handling variables. (It's easy to provide twenty-six variables
with single-letter names.) Add a variable for the most recently printed value.

Exercise 4-7. Write a routine unget s(s) that will push back an entire string onto the input.
Should unget s know about buf and buf p, or should it just use unget ch?

Exercise 4-8. Suppose that there will never be more than one character of pushback. Modify
get ch and unget ch accordingly.

Exercise 4-9. Our getch and unget ch do not handle a pushed-back EOF correctly. Decide
what their properties ought to be if an EOF is pushed back, then implement your design.

Exercise 4-10. An alternate organization uses get | i ne to read an entire input ling; this makes
get ch and unget ch unnecessary. Revise the calculator to use this approach.

4.4 Scope Rules

The functions and external variables that make up a C program need not al be compiled at the
same time; the source text of the program may be kept in severd files, and previously compiled
routines may be loaded from libraries. Among the questions of interest are

How are declarations written so that variables are properly declared during
compilation?

How are declarations arranged so that al the pieces will be properly connected when
the program is loaded?

How are declarations organized so there is only one copy?

How are externa variables initialized?

Let us discuss these topics by reorganizing the calculator program into severa files. As a
practical matter, the calculator is too smal to be worth splitting, but it is a fine illustration of
the issues that arise in larger programs.

The scope of a name is the part of the program within which the name can be used. For an
automatic variable declared at the beginning of a function, the scope is the function in which
the name is declared. Local variables of the same name in different functions are unrelated. The
same istrue of the parameters of the function, which are in effect local variables.

The scope of an externa variable or a function lasts from the point at which it is declared to
the end of the file being compiled. For example, if mai n, sp, val , push, and pop are defined in
onefile, in the order shown above, that is,

main() { ... }
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int sp = 0;
doubl e val [ MAXVAL] ;

voi d push(double f) { ... }

doubl e pop(void) { ... }
then the variables sp and val may be used in push and pop Smply by naming them; no further
declarations are needed. But these names are not visble in mai n, nor are push and pop
themselves.

On the other hand, if an externa variable is to be referred to before it is defined, or if it is
defined in a different source file from the one where it is being used, then an extern
declaration is mandatory.

It is important to distinguish between the declaration of an external variable and its definition.
A declaration announces the properties of a variable (primarily its type); a definition aso
causes storage to be set aside. If the lines

int sp;
doubl e val [ MAXVAL] ;

appear outside of any function, they define the external variables sp and val , cause storage to
be sat aside, and aso serve as the declarations for the rest of that source file. On the other
hand, the lines

extern int sp;
extern double val[];

declare for the rest of the source file that sp isanint and that val isadoubl e array (whose
sizeis determined elsewhere), but they do not create the variables or reserve storage for them.

There must be only one definition of an externa variable among al the files that make up the
source program; other files may contain ext er n declarations to access it. (There may also be
ext er n declarations in the file containing the definition.) Array sizes must be specified with the
definition, but are optional with an ext er n declaration.

Initialization of an externa variable goes only with the definition.

Although it is not a likely organization for this program, the functions push and pop could be
defined in one file, and the variables val and sp defined and initidlized in another. Then these
definitions and declarations would be necessary to tie them together:

infilel:

extern int sp;
extern double val[];

voi d push(double f) { ... }

doubl e pop(void) { ... }
infile2:

int sp = 0;

doublg val [ MAXVAL] ;
Because the ext er n declarations in filel lie ahead of and outside the function definitions, they
apply to dl functions; one set of declarations suffices for dl of filel. This same organization
would also bee needed if the definition of sp and val followed their usein onefile.

4.5 Header Files

Let is now consider dividing the calculator program into several source files, as it might be is
each of the components were substantially bigger. The mai n function would go in one file,
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which we will cal main. c; push, pop, and their variables go into a second file, stack. c;
get op goes into a third, get op. c. Findly, get ch and unget ch go into afourth file, get ch. c;
we separate them from the others because they would come from a separately-compiled library
in arealistic program.

There is one more thing to worry about - the definitions and declarations shared among files.
As much as possible, we want to centralize this, so that there is only one copy to get and keep
right as the program evolves. Accordingly, we will place this common material in a header file,
cal c. h, which will be included as necessary. (The #i ncl ude line is described in Section 4.11.)
The resulting program then looks like this:

calc.h

#define NUMBER ‘0’
void push(double);
double pop(veoid);
int getop(char [1);
int getch(void);
void ungetch(int);

main.c getop.c stack.c
#include <stdic.h> #include <stdioc.h> #include <stdioc.h>
#include <stdlib.h> #include <ctype.h> #include "“calc.h"
#include "“calc.h" #include "“calc.h" #define MAXVAL 100
#define MAXDP 100 getop() { int sp = 0;
main() { - donble wal [MAXVAL];
- } void push(double) {
} } -
double pop(void) {
getch.c Cas
#include <stdioc.h> t

#define BUFSIZE 100
char buf [BUFSIZE];
int bufp = 0;

int getch(void) {

}

void ungetch(int) {

}

There is a tradeoff between the desire that each file have access only to the information it
needs for its job and the practical reality that it is harder to maintain more header files. Up to
some moderate program size, it is probably best to have one header file that contains
everything that is to be shared between any two parts of the program; that is the decision we
made here. For a much larger program, more organization and more headers would be needed.

4.6 Static Variables
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The variables sp and val instack. ¢, and buf and buf p in get ch. c, are for the private use of
the functions in their respective source files, and are not meant to be accessed by anything else.
The static declaration, applied to an externa variable or function, limits the scope of that
object to the rest of the source file being compiled. Externa st ati ¢ thus provides a way to
hide names like buf and buf p in the get ch- unget ch combination, which must be externa so
they can be shared, yet which should not be visible to users of get ch and unget ch.

Static storage is specified by prefixing the normal declaration with the word st ati c. If the two
routines and the two variables are compiled in onefile, asin

static char buf[BUFSIZE]; /* buffer for ungetch */

static int bufp = 0; /* next free position in buf */
int getch(void) { ... }
voi d ungetch(int c) { ... }

then no other routine will be able to access buf and buf p, and those names will not conflict
with the same names in other files of the same program. In the same way, the variables that
push and pop use for stack manipulation can be hidden, by declaring sp and val tobestati c.

The external static declaration is most often used for variables, but it can be applied to
functions as well. Normaly, function names are globa, visble to any part of the entire
program. If afunction is declared st at i ¢, however, its name is invisble outside of the file in
which it is declared.

The st ati ¢ declaration can aso be applied to internal variables. Internal st ati ¢ variables are
local to a particular function just as automatic variables are, but unlike automatics, they remain
in existence rather than coming and going each time the function is activated. This means that
internal st at i ¢ variables provide private, permanent storage within a single function.

Exercise 4-11. Modify get op S0 that it doesn't need to use unget ch. Hint: use an interna
stati c variable

4.7 Register Variables

A regi st er declaration advises the compiler that the variable in question will be heavily used.
The ideais that r egi st er variables are to be placed in machine registers, which may result in
smaller and faster programs. But compilers are free to ignore the advice.

Ther egi st er declaration looks like

register int x;
regi ster char c;

and so on. The regi ster declaration can only be applied to automatic variables and to the
formal parameters of afunction. In this later case, it looks like

f(register unsigned m register |ong n)
register int i;

}

In practice, there are restrictions on register variables, reflecting the redlities of underlying
hardware. Only afew variables in each function may be kept in registers, and only certain types
are dlowed. Excess register declarations are harmless, however, since the word regi ster is
ignored for excess or disallowed declarations. And it is not possible to take the address of a
register variable (a topic covered in Chapter 5), regardless of whether the variable is actually
placed in a register. The specific restrictions on number and types of register variables vary
from machine to machine.
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4.8 Block Structure

C is not a block-structured language in the sense of Pascal or smilar languages, because
functions may not be defined within other functions. On the other hand, variables can be
defined in a block-structured fashion within a function. Declarations of variables (including
initializations) may follow the left brace that introduces any compound statement, not just the
one that begins a function. Variables declared in this way hide any identicaly named variables
in outer blocks, and remain in existence until the matching right brace. For example, in

if (n>0) {
int i; [/* declare a newi */

for (i =0; i < n; i++)

}
the scope of the variable i is the “true" branch of thei f; thisi is unrelated to any i outside

the block. An automatic variable declared and initidlized in a block is initidized each time the
block is entered.

Automatic variables, including formal parameters, also hide external variables and functions of
the same name. Given the declarations

int Xx;
int vy;

f (doubl e x)

doubl e v;

}
then within the function f , occurrences of x refer to the parameter, which is a doubl e; outside

f , they refer to the externa i nt . The same istrue of the variabley.

As amatter of style, it's best to avoid variable names that conceal names in an outer scope; the
potential for confusion and error is too great.

4.9 | nitialization

Initialization has been mentioned in passing many times so far, but aways peripherally to some
other topic. This section summarizes some of the rules, now that we have discussed the
various storage classes.

In the absence of explicit initidization, external and static variables are guaranteed to be
initialized to zero; automatic and register variables have undefined (i.e., garbage) initial values.

Scalar variables may be initialized when they are defined, by following the name with an equals
sign and an expression:

int x = 1;
char squota = '"\"'";
long day = 1000L * 60L * 60L * 24L; /* milliseconds/day */

For external and static variables, the initializer must be a constant expression; the initialization
is done once, conceptionaly before the program begins execution. For automatic and register
variables, the initidizer is not restricted to being a constant: it may be any expression involving
previousy defined values, even function cals. For example, the initidization of the binary
search program in Section 3.3 could be written as

int binsearch(int x, int v[], int n)

int low = 0;
int high =n- 1;
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int md;

}
instead of

int low, high, md;

| ow = 0;

high = n - 1;
In effect, initidization of automatic variables are just shorthand for assgnment statements.
Which form to prefer is largely a matter of taste. We have generally used explicit assignments,
because initializers in declarations are harder to see and further away from the point of use.

An array may be initialized by following its declaration with a list of initializers enclosed in
braces and separated by commas. For example, to initialize an array days with the number of
days in each month:

int days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
When the size of the array is omitted, the compiler will compute the length by counting the
initializers, of which there are 12 in this case.

If there are fewer initializers for an array than the specified size, the others will be zero for
external, static and automatic variables. It is an error to have too many initializers. There is no
way to specify repetition of an initidizer, nor to initiaize an eement in the middle of an array
without supplying all the preceding values as well.

Character arrays are a specid case of initialization; a string may be used instead of the braces
and commas notation:

char pattern = "oul d*;
is a shorthand for the longer but equivalent

char pattern[] ={ "o, "u, "I', "d, "\0 };
In this case, the array sizeisfive (four characters plus the terminating ' \ 0' ).

4.10 Recursion

C functions may be used recursively; that is, a function may cal itself ether directly or
indirectly. Consider printing a number as a character string. As we mentioned before, the digits
are generated in the wrong order: low-order digits are available before high-order digits, but
they have to be printed the other way around.

There are two solutions to this problem. On is to store the digits in an array as they are
generated, then print them in the reverse order, as we did with itoa in section 3.6. The
aternative is a recursive solution, in which printd first cdls itself to cope with any leading
digits, then prints the trailing digit. Again, this version can fail on the largest negative number.

#i ncl ude <stdio. h>

[* printd: print nin deciml */
voi d printd(int n)

if (n<0) {
putchar('-');
n=-n;

}
if (n/ 10)

printd(n / 10);
putchar(n %10 + '0");
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When a function cals itsalf recursively, each invocation gets a fresh set of dl the automatic
variables, independent of the previous set. This in pri nt d(123) the first pri ntd receives the
argument n = 123. It passes 12 to a second pri ntd, which in turn passes 1 to a third. The
third-level pri nt d prints 1, then returns to the second level. That pri nt d prints 2, then returns
to thefirst level. That one prints 3 and terminates.

Another good example of recursion is quicksort, a sorting algorithm developed by C.A.R.
Hoare in 1962. Given an array, one element is chosen and the others partitioned in two subsets
- those less than the partition element and those greater than or equal to it. The same processis
then applied recursively to the two subsets. When a subset has fewer than two elements, it
doesn't need any sorting; this stops the recursion.

Our version of quicksort is not the fastest possible, but it's one of the smplest. We use the
middle element of each subarray for partitioning.

/* gsort: sort v[left]...v[right] into increasing order */
void gsort(int v[], int left, int right)

int i, last;

voi d swap(int v[], int i, int j);

if (left >=right) /* do nothing if array contains */
return; [* fewer than two el enents */

swap(v, left, (left + right)/2); /* nove partition elem*/

last = left; /[* to v[0O] */

for (i =left +1; i <=right; i++) [* partition */

if (v[i] <v[left])
swap(v, ++last, i);
swap(v, left, last); /* restore partition elem?*/
gsort (v, left, last-1);
gsort(v, last+1, right);
}
We moved the swapping operation into a separate function swap because it occurs three times

ingsort.

/* swap: interchange v[i] and v[j] */
void swap(int v[], int i, int j)

int tenp;

tenp = v[i];

vii] = v[jl;
} v[j] = tenp;

The standard library includes aversion of gsort that can sort objects of any type.

Recursion may provide no saving in storage, snce somewhere a stack of the values being
processed must be maintained. Nor will it be faster. But recursive code is more compact, and
often much easier to write and understand than the non-recursive equivalent. Recursion is
especidly convenient for recursively defined data structures like trees, we will see a nice
example in Section 6.6.

Exercise 4-12. Adapt the ideas of pri nt d to write arecursive version of i t oa; that is, convert
an integer into a string by calling a recursive routine.

Exercise 4-13. Write a recursive version of the function reverse(s), which reverses the
string s in place.

4.11 The C Preprocessor



75

C provides certain language facilities by means of a preprocessor, which is conceptionally a
separate first step in compilation. The two most frequently used features are #i ncl ude, to
include the contents of a file during compilation, and #def i ne, to replace a token by an
arbitrary sequence of characters. Other features described in this section include conditional
compilation and macros with arguments.

4.11.1 FileInclusion

File incluson makes it easy to handle collections of #def i nes and declarations (among other
things). Any source line of the form

#i ncl ude "fil enane"
or

#i ncl ude <fil enane>
is replaced by the contents of the file filename. If the filename is quoted, searching for the file
typicaly begins where the source program was found; if it is not found there, or if the name is
enclosed in < and >, searching follows an implementation-defined rule to find the file. An
included file may itself contain #i ncl ude lines.

There are often severa #i ncl ude lines a the beginning of a source file, to include common
#def i ne statements and ext er n declarations, or to access the function prototype declarations
for library functions from headers like <st di o. h>. (Strictly speaking, these need not be files,
the details of how headers are accessed are implementation-dependent.)

#i ncl ude is the preferred way to tie the declarations together for a large program. It
guarantees that al the source files will be supplied with the same definitions and variable
declarations, and thus eliminates a particularly nasty kind of bug. Naturally, when an included
fileis changed, all files that depend on it must be recompiled.

4.11.2 Macro Substitution
A definition has the form

#def i ne nane repl acenment text

It cdls for a macro substitution of the smplest kind - subsequent occurrences of the token
name Will be replaced by the replacement text. The name in a#def i ne has the same form as a
variable name; the replacement text is arbitrary. Normally the replacement text is the rest of the
line, but a long definition may be continued onto several lines by placing a\ at the end of each
line to be continued. The scope of a name defined with #def i ne is from its point of definition
to the end of the source file being compiled. A definition may use previous definitions.
Substitutions are made only for tokens, and do not take place within quoted strings. For
example, if YES is a defined name, there would be no substitution in printf("YES") or in
YESMAN.

Any name may be defined with any replacement text. For example

#define forever for (;;) [* infinite | oop */
defines anew word, f or ever , for an infinite loop.

It isalso possible to define macros with arguments, so the replacement text can be different for
different calls of the macro. As an example, define a macro called nax:

#define max(A, B) ((A) > (B) ? (A : (B))
Although it looks like a function call, a use of max expands into in-line code. Each occurrence
of a formal parameter (here A or B) will be replaced by the corresponding actual argument.
Thustheline
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X = max(p+q, r+s);

will be replaced by the line

x = ((ptq) > (r+s) ? (p+q) : (r+s));
So long as the arguments are treated consistently, this macro will serve for any data type; there
isno need for different kinds of nax for different data types, as there would be with functions.

If you examine the expansion of max, you will notice some pitfals. The expressions are
evaluated twice; this is bad if they involve side effects like increment operators or input and
output. For instance

max(i ++, j++) /* WRONG */
will increment the larger twice. Some care aso has to be taken with parentheses to make sure
the order of evaluation is preserved; consider what happens when the macro

#define square(x) x * x [* VWRONG */
isinvoked assquar e(z+1) .

Nonetheless, macros are valuable. One practical example comes from <st di o. h>, in which
getchar and putchar are often defined as macros to avoid the run-time overhead of a
function cal per character processed. The functions in <ctype.h> are also usudly
implemented as macros.

Names may be undefined with #undef , usualy to ensure that a routine is really a function, not
amacro:

#undef getchar

int getchar(void) { ... }
Formal parameters are not replaced within quoted strings. If, however, a parameter name is
preceded by a# in the replacement text, the combination will be expanded into a quoted string
with the parameter replaced by the actual argument. This can be combined with string
concatenation to make, for example, a debugging print macro:

#define dprint(expr) printf(#expr " = %g\n", expr)
When thisisinvoked, asin

dprint(x/y)
the macro is expanded into

printf("x/y" " = &\n", x/y);
and the strings are concatenated, so the effect is

printf("x/y = &\n", x/y);
Within the actual argument, each " isreplaced by \" and each\ by \\, so the result is a lega
string constant.

The preprocessor operator ## provides a way to concatenate actual arguments during macro
expansion. If a parameter in the replacement text is adjacent to a ##, the parameter is replaced
by the actual argument, the ## and surrounding white space are removed, and the result is re-
scanned. For example, the macro past e concatenates its two arguments:

#define paste(front, back) front ## back
SO past e(nane, 1) createsthetoken nanel.

The rules for nested uses of ## are arcane; further details may be found in Appendix A.

Exercise 4-14. Define a macro swap(t, x,y) that interchanges two arguments of type t.
(Block structure will help.)
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4.11.3 Conditional Inclusion

It is possible to control preprocessing itself with conditiona statements that are evaluated
during preprocessing. This provides a way to include code selectively, depending on the value
of conditions evaluated during compilation.

The #i f line evaluates a constant integer expression (which may not include si zeof , casts, or
enum constants). If the expression is non-zero, subsequent lines until an #endi f or #el i f or
#el se are included. (The preprocessor statement #elif is like el se-if.) The expression
defi ned(name) ina#if is1if the name has been defined, and O otherwise.

For example, to make sure that the contents of a file hdr. h are included only once, the
contents of the file are surrounded with a conditional like this:

#i f !defi ned( HDR)
#defi ne HDR

/* contents of hdr.h go here */

#endi f
The first incluson of hdr. h defines the name HDR; subsequent inclusions will find the name
defined and skip down to the #endif. A smilar style can be used to avoid including files
multiple times. If this style is used consistently, then each header can itself include any other
headers on which it depends, without the user of the header having to deal with the
interdependence.

This sequence tests the name SYSTEMto decide which version of a header to include:

#if SYSTEM == SYSV
#defi ne HDR "sysv. h"
#el i f SYSTEM == BSD
#defi ne HDR "bsd. h"
#el i f SYSTEM == MSDOS
#defi ne HDR "nsdos. h"
#el se
#define HDR "default.h"
#endi f
#i ncl ude HDR

The #i f def and #i f ndef lines are specialized forms that test whether a name is defined. The
first example of #i f above could have been written

#i f ndef HDR
#defi ne HDR

/* contents of hdr.h go here */

#endi f
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Chapter 5- Pointersand Arrays

A pointer is a variable that contains the address of a variable. Pointers are much used in C,
partly because they are sometimes the only way to express a computation, and partly because
they usually lead to more compact and efficient code than can be obtained in other ways.
Pointers and arrays are closely related; this chapter aso explores this relationship and shows
how to exploit it.

Pointers have been lumped with the got o statement as a marvelous way to create impossible-
to-understand programs. This is certainly true when they are used carelessly, and it is easy to
create pointers that point somewhere unexpected. With discipline, however, pointers can aso
be used to achieve clarity and simplicity. Thisis the aspect that we will try to illustrate.

The main change in ANSI C is to make explicit the rules about how pointers can be
manipulated, in effect mandating what good programmers aready practice and good compilers
already enforce. In addition, the type voi d * (pointer to voi d) replaces char * as the proper
type for a generic pointer.

5.1 Pointers and Addresses

Let us begin with a smplified picture of how memory is organized. A typical machine has an
array of consecutively numbered or addressed memory cells that may be manipulated
individudly or in contiguous groups. One common situation is that any byte can be achar, a
pair of one-byte cells can be treated asashort integer, and four adjacent bytesform al ong. A
pointer is agroup of cells (often two or four) that can hold an address. So if c isachar and p
isapointer that points to it, we could represent the situation this way:

P o

The unary operator & gives the address of an object, so the statement

p = &c;
assigns the address of ¢ to the variable p, and p is said to “point to" c¢. The & operator only
applies to objects in memory: variables and array elements. It cannot be applied to expressions,
constants, or r egi st er variables.

The unary operator * is the indirection or dereferencing operator; when applied to a pointer, it
accesses the object the pointer points to. Suppose that x and y are integers and i p is a pointer
toint. Thisartificia sequence shows how to declare a pointer and how to use & and *:

int x =1, y =2, z[10];

int *ip; [* ipis apointer to int */
ip = &; [* ip now points to x */

y = *ip; /[* yis now 1 */

*ip = 0; /[* x is now O */

ip = &[0]; [* ip now points to z[0] */

The declaration of x, y, and z are what we've seen al along. The declaration of the pointer i p,

int *ip;
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is intended as a mnemonic; it says that the expression *ip is an int. The syntax of the
declaration for a variable mimics the syntax of expressions in which the variable might appear.
This reasoning applies to function declarations as well. For example,

doubl e *dp, atof(char *);
says that in an expression *dp and at of (s) have values of doubl e, and that the argument of
at of isapointer to char .

Y ou should aso note the implication that a pointer is constrained to point to a particular kind
of object: every pointer points to a specific data type. (There is one exception: a ~"pointer to
voi d" is used to hold any type of pointer but cannot be dereferenced itself. Well come back to
itin Section 5.11.)

If i p points to the integer x, then *i p can occur in any context where x could, so
*Ip = *ip + 10;
increments *i p by 10.
The unary operators * and & bind more tightly than arithmetic operators, so the assignment

y =*ip+1

takes whatever i p points at, adds 1, and assigns the result to y, while
*ip+=1

incrementswhat i p pointsto, as do
++*ip

and

(*ip)++
The parentheses are necessary in this last example; without them, the expression would
increment i p instead of what it points to, because unary operators like * and ++ associate right
to | eft.

Findly, since pointers are variables, they can be used without dereferencing. For example, if i g
isanother pointer toi nt ,

g =1ip
copies the contents of i p intoi g, thusmaking i g point to whatever i p pointed to.

5.2 Pointers and Function Arguments

Since C passes arguments to functions by value, there is no direct way for the called function
to ater a variable in the calling function. For instance, a sorting routine might exchange two
out-of-order arguments with a function called swap. It is not enough to write

swap(a, b);
where the swap function is defined as

void swap(int x, int y) /* VWRONG */
{
int tenp;

enp = x;

< x =

}
Because of cdl by value, swap can't affect the arguments a and b in the routine that called it.

The function above swaps copies of a and b.
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The way to obtain the desired effect is for the caling program to pass pointers to the values to
be changed:

swap( &, &b);
Since the operator & produces the address of a variable, & is a pointer to a. In swap itsdlf, the
parameters are declared as pointers, and the operands are accessed indirectly through them.

void swap(int *px, int *py) /* interchange *px and *py */

int tenp;
tenp = *px;
*px = *py;
*py = tenp;
}
Pictorialy:
i caller:
b: .
\'\
S
.,
a: ..
.
N
in swap:
PX: | o1 |
r .'-"""FF;
PY: | &

Pointer arguments enable a function to access and change objects in the function that called it.
As an example, consider a function getint that performs free-format input conversion by
breaking a stream of characters into integer values, one integer per cal. geti nt has to return
the value it found and also signa end of file when there is no more input. These vaues have to
be passed back by separate paths, for no matter what value is used for EQF, that could aso be
the value of an input integer.

One solution isto have get i nt return the end of file status as its function value, while using a
pointer argument to store the converted integer back in the cdling function. This is the scheme
used by scanf aswell; see Section 7.4.

The following loop fills an array with integers by callsto get i nt :
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int n, array[SIZE], getint(int *);

for (n =0; n < SIZE && getint(&array[n]) != ECF, n++)

Each call setsarray[n] to the next integer found in the input and increments n. Notice that it
is essential to pass the address of array[ n] to geti nt. Otherwise there is no way for get i nt
to communi cate the converted integer back to the caller.

Our version of get i nt returns ECF for end of file, zero if the next input is not a number, and a
positive value if the input contains a valid number.

#i ncl ude <ctype. h>

int getch(void);
voi d ungetch(int);

/* getint: get next integer frominput into *pn */
int getint(int *pn)

int c, sign;

whil e (isspace(c = getch())) /* skip white space */

if (lisdigit(c) & c != EOF && c !'="+ && c !="-") {
ungetch(c); [/* it is not a number */
return O;

}

sign = (¢c =="'-") ? -1: 1,

if (c ="+ || ¢c="-")
c = getch();

for (*pn = 0; i

sdigit(c), ¢ = getch())
*pn = 10 * *pn + (c - '0");
*pn *= sign;
if (c !'= EOF)
unget ch(c);
return c;

}
Throughout getint, *pn is used as an ordinary i nt variable. We have aso used get ch and

unget ch (described in Section 4.3) so the one extra character that must be read can be pushed
back onto the inpuit.

Exercise 5-1. As written, getint treats a + or - not followed by a digit as a vaid
representation of zero. Fix it to push such a character back on the input.

Exercise 5-2. Write get f | oat , the floating-point analog of get i nt . What type does get f | oat
return as its function value?

5.3 Pointersand Arrays

In C, there is a strong relationship between pointers and arrays, strong enough that pointers
and arrays should be discussed simultaneously. Any operation that can be achieved by array
subscripting can aso be done with pointers. The pointer version will in general be faster but, at
least to the uninitiated, somewhat harder to understand.

The declaration
int a[10];

defines an array of size 10, that is, a block of 10 consecutive objects named a[ 0], a[ 1],
.,a[ 9] .
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alo] a[1] a[9]

The notation a[i] refers to the i -th dement of the array. If pa is a pointer to an integer,
declared as

int *pa;
then the assignment

pa = &a[0];
sets pa to point to element zero of a; that is, pa contains the address of a[ 0] .

pa:

r—.

N

a:
al0]
Now the assignment
X = *pa;

will copy the contents of a[ 0] into x.
If pa points to a particular element of an array, then by definition pa+1 points to the next
element, pa+i pointsi elements after pa, and pa-i pointsi elements before. Thus, if pa points
toa[ 0],

*(patl)
refers to the contents of a[ 1], pa+i is the address of a[i], and *(pa+i) is the contents of
ali].

pa: patl: pat2:

N

alo]
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These remarks are true regardless of the type or size of the variables in the array a. The
meaning of “adding 1 to a pointer,” and by extension, al pointer arithmetic, isthat pa+1 points
to the next object, and pa+i pointsto the i -th object beyond pa.

The correspondence between indexing and pointer arithmetic is very close. By definition, the
value of avariable or expression of type array is the address of element zero of the array. Thus
after the assignment

pa = &a[0];
pa and a have identical values. Since the name of an array is a synonym for the location of the
initial element, the assignment pa=&a[ 0] can aso be written as

pa = a;
Rather more surprising, at first sight, is the fact that areferenceto a[i] can aso be written as
*(a+i). In evauating a[i], C converts it to *(a+i) immediately; the two forms are

equivaent. Applying the operator & to both parts of this equivaence, it follows that &a[i] and
a+i aredso identica: a+i isthe address of the i -th element beyond a. As the other side of this
coin, if pa isapointer, expressions might use it with a subscript; pa[i] isidentical to * (pa+i) .
In short, an array-and-index expression is equivalent to one written as a pointer and off set.

There is one difference between an array name and a pointer that must be kept in mind. A
pointer is a variable, s0 pa=a and pa++ are lega. But an array name is not a variable;
constructions like a=pa and a++ areillegal.

When an array name is passed to a function, what is passed is the location of the initia
element. Within the called function, this argument is a local variable, and so an array name
parameter is a pointer, that is, a variable containing an address. We can use this fact to write
another version of st r | en, which computes the length of a string.

/* strlen: return length of string s */
int strlen(char *s)

{

int n;

for (n =0; *s 1="\0", s++)
n++;
return n;
}
Since s is apointer, incrementing it is perfectly lega; s++ has no effect on the character string
in the function that called st r | en, but merely increments st r | en's private copy of the pointer.
That meansthat calls like

strlen("hello, world"); /* string constant */
strlen(array); /* char array[100]; */
strlen(ptr); [* char *ptr; */

al work.

Asformal parametersin afunction definition,

char s[];
and

char *s;
are equivalent; we prefer the latter because it says more explicitly that the variable is a pointer.
When an array name is passed to a function, the function can at its convenience believe that it
has been handed either an array or a pointer, and manipulate it accordingly. It can even use
both notations if it seems appropriate and clear.
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It is possible to pass part of an array to a function, by passing a pointer to the beginning of the
subarray. For example, if a isan array,

f(&a[2])
and

f (a+2)
both pass to the function f the address of the subarray that starts a a[ 2] . Within f, the
parameter declaration can read

f(int arr[]) { ... }
or

f(int *arr) { ... }
So asfar asf is concerned, the fact that the parameter refers to part of alarger array is of no
conseguence.

If oneis sure that the elements exist, it is also possible to index backwards in an array; p[ - 1],
p[-2], ahd so on are syntacticaly legal, and refer to the elements that immediately precede
p[ 0] . Of course, it isillegal to refer to objects that are not within the array bounds.

5.4 Address Arithmetic

If p is a pointer to some element of an array, then p++ increments p to point to the next
element, and p+=i incrementsit to point i elements beyond where it currently does. These and
similar constructions are the simples forms of pointer or address arithmetic.

C is consistent and regular in its approach to address arithmetic; its integration of pointers,
arrays, and address arithmetic is one of the strengths of the language. Let us illustrate by
writing a rudimentary storage allocator. There are two routines. The first, al | oc(n), returns a
pointer to n consecutive character positions, which can be used by the caler of al | oc for
storing characters. The second, af r ee(p) , releases the storage thus acquired o it can be re-
used later. The routines are " rudimentary" because the cals to af ree must be made in the
opposite order to the cals made on al | oc. That is, the storage managed by al | oc and af r ee
isastack, or last-in, first-out. The standard library provides analogous functions called mal | oc
and free that have no such restrictions; in Section 8.7 we will show how they can be
implemented.

The easiest implementation is to have al | oc hand out pieces of alarge character array that we
will call al I ocbuf . This array is private to al | oc and af r ee. Since they deal in pointers, not
array indices, no other routine need know the name of the array, which can be declared st ati c
in the source file containing al | oc and af ree, and thus be invisble outside it. In practical
implementations, the array may well not even have a name; it might instead be obtained by
cdling mal I oc or by asking the operating system for a pointer to some unnamed block of
storage.

The other information needed is how much of al | ocbuf has been used. We use a pointer,
caled al | ocp, that points to the next free element. When al | oc is asked for n characters, it
checks to see if there is enough room left in al | ocbuf . If SO, al | oc returns the current value
of al | ocp (i.e, the beginning of the free block), then increments it by n to point to the next
free area. If there is no room, al | oc returns zero. af ree(p) merely setsallocp top if p is
inside al | ocbuf .
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before call to alloec:

allocp: ~
allocbuf:
+«— 171 use ——» - free
after call to alloc:
allocp: ~
allccbnf:
- 71 1Se > free —

#define ALLOCSI ZE 10000 /* size of avail abl e space */

static char allocbuf[ ALLOCSI ZE]; /* storage for alloc */
static char *allocp = allocbuf; /* next free position */

char *alloc(int n) /[* return pointer to n characters */

if (allocbuf + ALLCCSIZE - allocp >=n) { /* it fits */
all ocp += n;
return allocp - n; /* old p */

} else /* not enough room */
return O;

}

void afree(char *p) /* free storage pointed to by p */

if (p >= allochuf &% p < allocbhuf + ALLCCSI ZE)
allocp = p;
}
In general a pointer can be initidized just as any other variable can, though normaly the only

meaningful values are zero or an expression involving the address of previoudy defined data of
appropriate type. The declaration

static char *allocp = allocbuf;
defines al | ocp to be a character pointer and initidizes it to point to the beginning of
al | ocbuf , which is the next free position when the program starts. This could aso have been
written

static char *allocp = &all ochuf[O0];
since the array name is the address of the zeroth element.

The test

if (allocbuf + ALLCCSIZE - allocp >=n) { /* it fits */
checks if there's enough room to satisfy arequest for n characters. If there is, the new vaue of
al | ocp would be at most one beyond the end of al | ocbuf . If the request can be satisfied,
al | oc returns a pointer to the beginning of a block of characters (notice the declaration of the
function itsdlf). If not, al | oc must return some signal that there is no space left. C guarantees
that zero is never a valid address for data, so a return value of zero can be used to signa an
abnormal event, in this case no space.

Pointers and integers are not interchangeable. Zero is the sole exception: the constant zero may
be assigned to a pointer, and a pointer may be compared with the constant zero. The symbolic
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constant NULL is often used in place of zero, as a mnemonic to indicate more clearly that thisis
aspecia vaue for apointer. NULL isdefined in <st di 0. h>. We will use NULL henceforth.

Testslike

if (allocbuf + ALLOCSIZE - allocp >=n) { /* it fits */
and

if (p >= allochuf &% p < allocbhuf + ALLCCSI ZE)
show several important facets of pointer arithmetic. First, pointers may be compared under
certain circumstances. If p and g point to members of the same array, then relationslike==, ! =,
<, >=, etc., work properly. For example,

P<q
is true if p points to an earlier element of the array than q does. Any pointer can be
meaningfully compared for equality or inequality with zero. But the behavior is undefined for
arithmetic or comparisons with pointers that do not point to members of the same array.
(There is one exception: the address of the first element past the end of an array can be used in
pointer arithmetic.)

Second, we have aready observed that a pointer and an integer may be added or subtracted.
The construction

p+n

means the address of the n-th object beyond the one p currently points to. This is true
regardless of the kind of object p points to; n is scaled according to the size of the objects p
points to, which is determined by the declaration of p. If ani nt isfour bytes, for example, the
i nt will be scaled by four.

Pointer subtraction is also valid: if p and g point to elements of the same array, and p<q, then
g- p+1 is the number of eements from p to g inclusve. This fact can be used to write yet
another version of strl en:

/* strlen: return length of string s */
int strlen(char *s)

{

char *p = s;
while (*p !="'\0")
pH+;
} return p - s;

In its declaration, p isinitidized to s, that is, to point to the first character of the string. In the
whi | e loop, each character in turn is examined until the '\ 0' at the end is seen. Because p
points to characters, p++ advances p to the next character each time, and p- s gives the number
of characters advanced over, that is, the string length. (The number of characters in the string
could be too large to storein an i nt . The header <st ddef . h> definesatypeptrdi ff_t thatis
large enough to hold the signed difference of two pointer values. If we were being cautious,
however, we would use si ze_t for the return value of strl en, to match the standard library
version. si ze_t isthe unsigned integer type returned by the si zeof operator.

Pointer arithmetic is consistent: if we had been deding with f1 oats, which occupy more
storage that chars, and if p were a pointer to f | oat , p++ would advance to the next f 1 oat .
Thus we could write another version of al | oc that maintains f | oat s instead of char s, merely
by changing char to float throughout alloc and afree. All the pointer manipulations
automatically take into account the size of the objects pointed to.
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The vaid pointer operations are assgnment of pointers of the same type, adding or subtracting
a pointer and an integer, subtracting or comparing two pointers to members of the same array,
and assigning or comparing to zero. All other pointer arithmetic isillegal. It isnot legal to add
two pointers, or to multiply or divide or shift or mask them, or to add f | oat or doubl e to
them, or even, except for voi d *, to assign a pointer of one type to a pointer of another type
without a cast.

5.5 Character Pointers and Functions
A string constant, written as

"I ama string"
is an array of characters. In the internal representation, the array is terminated with the null
character ' \ 0' so that programs can find the end. The length in storage is thus one more than
the number of characters between the double quotes.

Perhaps the most common occurrence of string constants is as arguments to functions, asin

printf("hello, world\n");
When a character string like this appears in a program, access to it is through a character
pointer; printf receives a pointer to the beginning of the character array. That is, a string
constant is accessed by a pointer to its first element.

String constants need not be function arguments. If pressage isdeclared as

char *pnessage;
then the statement

pressage = "now is the time";
assigns to pnessage a pointer to the character array. This is not a string copy; only pointers
are involved. C does not provide any operators for processing an entire string of characters as
aunit.

There is an important difference between these definitions:

char anessage[] = "nowis the time"; /* an array */

char *pnessage = "nowis the tine"; /* a pointer */
anessage IS an array, just big enough to hold the sequence of characters and '\ 0' that
initidizes it. Individual characters within the array may be changed but anessage will dways
refer to the same storage. On the other hand, pnessage is a pointer, initidized to point to a
string constant; the pointer may subsequently be modified to point elsewhere, but the result is
undefined if you try to modify the string contents.

amessage: . * now is the time\0D

pmessage: | now is the time\0

We will illustrate more aspects of pointers and arrays by studying versions of two useful
functions adapted from the standard library. The first function is st rcpy(s, t), which copies
the string t to the string s. It would be nice just to say s=t but this copies the pointer, not the
characters. To copy the characters, we need aloop. The array version first:
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/* strcpy: copy t to s; array subscript version */
void strcpy(char *s, char *t)

int i;

i = 0;
while ((s[i] = t[i]) !'="'\0")
i ++;
}
For contrast, hereisaversion of st r cpy with pointers:

/* strcpy: copy t to s; pointer version */
void strcpy(char *s, char *t)

int i;

i = 0;
while ((*s = *t) I="\0") {
S++;
t++;
} }
Because arguments are passed by value, st rcpy can use the parameterss and t in any way it
pleases. Here they are conveniently initialized pointers, which are marched aong the arrays a
character at atime, until the' \ 0' that terminatest has been copied into s.

In practice, st r cpy would not be written as we showed it above. Experienced C programmers
would prefer

/* strcpy: copy t to s; pointer version 2 */
void strcpy(char *s, char *t)

while ((*s++ = *t++) 1= '\0")

}
This moves the increment of s and t into the test part of the loop. The vaue of *t ++ is the

character that t pointed to before t was incremented; the postfix ++ doesn't change t until
after this character has been fetched. In the same way, the character is stored into the old s
position before s isincremented. This character is also the value that is compared against ' \ 0'
to control the loop. The net effect is that characters are copied fromt to s, up and including
theterminating ' \ 0' .

As the find abbreviation, observe that a comparison against '\ 0' is redundant, since the
guestion is merely whether the expression is zero. So the function would likely be written as

/* strcpy: copy t to s; pointer version 3 */
void strcpy(char *s, char *t)

wWhile (*s++ = *t+4+)

}
Although this may seem cryptic at first sight, the notational convenience is considerable, and

the idiom should be mastered, because you will see it frequently in C programs.

The st r cpy inthe standard library (<st ri ng. h>) returns the target string asits function value.
The second routine that we will examine is strcnp(s,t), which compares the character
strings s and t, and returns negative, zero or positive if s is lexicographicaly less than, equal

to, or greater than t . The value is obtained by subtracting the characters at the first position
wheres and t disagree.

/* strcnp: return <O if s<t, O if s==t, >0 if s>t */
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int strcnp(char *s, char *t)
int i;

for (i =0; s[i] == t[i]; i++)
if (s[i] =="\0
return O;
return s[i] - t[i];
}
The pointer version of st rcnp:

/* strcnp: return <O if s<t, O if s==t, >0 if s>t */
int strcnp(char *s, char *t)

for (; *s == *t; s++, t+4)
if (*s =="'\0")
return O;
return *s - *t;
}
Since ++ and - - are either prefix or postfix operators, other combinations of * and ++ and - -

occur, athough less frequently. For example,

*
--p
decrements p before fetching the character that p points to. In fact, the pair of expressions
*p++ = val; [/* push val onto stack */
val = *--p; [* pop top of stack into val */

are the standard idiom for pushing and popping a stack; see Section 4.3.

The header <st ri ng. h> contains declarations for the functions mentioned in this section, plus
avariety of other string-handling functions from the standard library.

Exercise 5-3. Write a pointer version of the function strcat that we showed in Chapter 2:
strcat(s,t) copiesthestringt totheend of s.

Exercise 5-4. Write the function st rend(s, t), which returns 1 if the string t occurs a the
end of the string s, and zero otherwise.

Exercise 5-5. Write versions of the library functions st r ncpy, strncat, and st rncnp, which
operate on a most the first n characters of their argument strings. For example,
strncpy(s,t,n) copiesat most n charactersof t tos. Full descriptions arein Appendix B.

Exercise 5-6. Rewrite appropriate programs from earlier chapters and exercises with pointers
instead of array indexing. Good possihilities include get I i ne (Chapters 1 and 4), atoi , i t oa,
and their variants (Chapters 2, 3, and 4), reverse (Chapter 3), and strindex and getop

(Chapter 4).

5.6 Pointer Arrays, Pointersto Pointers

Since pointers are variables themselves, they can be stored in arrays just as other variables can.
Let us illustrate by writing a program that will sort a set of text lines into aphabetic order, a
stripped-down version of the UNIX program sort .

In Chapter 3, we presented a Shell sort function that would sort an array of integers, and in
Chapter 4 we improved on it with a quicksort. The same agorithms will work, except that now
we have to deal with lines of text, which are of different lengths, and which, unlike integers,
can't be compared or moved in a single operation. We need a data representation that will cope
efficiently and conveniently with variable-length text lines.

This is where the array of pointers enters. If the lines to be sorted are stored end-to-end in one
long character array, then each line can be accessed by a pointer to its first character. The
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pointers themselves can bee stored in an array. Two lines can be compared by passing their
pointers to strcnp. When two out-of-order lines have to be exchanged, the pointers in the
pointer array are exchanged, not the text lines themselves.

. » defghi L defghi
0—4-{ jklmnopqrst | > jklmnopgrst |
. = abc *—] abc

This eiminates the twin problems of complicated storage management and high overhead that
would go with moving the lines themselves.

The sorting process has three steps:

read all the lines of input
sort them
print themin order

As usual, it's best to divide the program into functions that match this natural divison, with the
main routine controlling the other functions. Let us defer the sorting step for a moment, and
concentrate on the data structure and the input and output.

The input routine has to collect and save the characters of each line, and build an array of
pointers to the lines. It will aso have to count the number of input lines, since that information
is needed for sorting and printing. Since the input function can only cope with a finite number
of input lines, it can return someillegal count like - 1 if too much input is presented.

The output routine only has to print the lines in the order in which they appear in the array of
pointers.

#i ncl ude <stdio. h>
#i ncl ude <string. h>

#defi ne MAXLI NES 5000 /* max #lines to be sorted */
char *lineptr[ MAXLINES]; /* pointers to text lines */

int readlines(char *lineptr[], int nlines);
void witelines(char *lineptr[], int nlines);

void qsort(char *lineptr[], int left, int right);

/* sort input lines */
mai n()

i nt nlines; /* nunber of input lines read */

if ((nlines = readlines(lineptr, MAXLINES)) >= 0) {
gsort(lineptr, O, nlines-1);
witelines(lineptr, nlines);
return O;

} else {
printf("error: input too big to sort\n");
return 1;

}

#defi ne MAXLEN 1000 /* max length of any input line */
int getline(char *, int);
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char *alloc(int);

/* readlines: read input lines */
int readlines(char *lineptr[], int maxlines)

{
int len, nlines;
char *p, |ine[ MVAXLEN ;
nlines = 0;
while ((len = getline(line, MAXLEN)) > 0)
if (nlines >= maxlines || p = alloc(len) == NULL)
return -1;
el se {
line[len-1] ="'\0"; [/* delete newine */
strcpy(p, line);
[ineptr[nlines++] = p;
return nlines;
}

/* witelines: wite output |lines */
void witelines(char *lineptr[], int nlines)

(O
int i;
for (i =0; i < nlines; i++)
printf("9%\n", lineptr[i]);
}
Thefunction get | i ne isfrom Section 1.9.

The main new thing is the declaration for | i neptr :

char *lineptr[ MAXLI NES]
says that i neptr is an array of MAXLI NES elements, each element of which is a pointer to a
char. That is, Iineptr[i] isa character pointer, and *1ineptr[i] isthe character it points
to, the first character of thei -th saved text line.

Since | i nept r isitself the name of an array, it can be treated as a pointer in the same manner
asinour earlier examples, and wr i t el i nes can be written instead as

/* witelines: wite output lines */
void witelines(char *lineptr[], int nlines)

while (nlines-- > 0)
printf("9s\n", *lineptr++);
}
Initidly, *1i nept r points to the first line, each element advances it to the next line pointer

whilenl i nes is counted down.

With input and output under control, we can proceed to sorting. The quicksort from Chapter 4
needs minor changes: the declarations have to be modified, and the comparison operation must
be done by cdling st r cnp. The agorithm remains the same, which gives us some confidence
that it will still work.

/* gsort: sort v[left]...v[right] into increasing order */
void qgsort(char *v[], int left, int right)

int i, last;
voi d swap(char *v[], int i, int j);

if (left >=right) /* do nothing if array contains */
return; /* fewer than two el enents */

swap(v, left, (left + right)/2);

last = left;
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for (i = left+l;, i <=right; i++)
if (strenp(v[i], v[left]) < 0)
swap(v, ++last, i);
swap(v, left, last);
gsort (v, left, last-1);
gsort(v, last+1, right);

}

Similarly, the swap routine needs only trivial changes:
/* swap: interchange v[i] and v[j] */
voi d swap(char *v[], int i, int j)

char *tenp;
tenp = v[i];
vii] = v[jl;
v[j] = tenp;

Since any individual element of v (alias| i nept r) is acharacter pointer, t enp must be also, o
one can be copied to the other.

Exercise 5-7. Rewrite readl i nes to store lines in an array supplied by mai n, rather than
cdling al | oc to maintain storage. How much faster is the program?

5.7 Multi-dimensional Arrays

C provides rectangular multi-dimensional arrays, although in practice they are much less used
than arrays of pointers. In this section, we will show some of their properties.

Consider the problem of date conversion, from day of the month to day of the year and vice
versa. For example, March 1 is the 60th day of anon-leap year, and the 61st day of aleap year.
Let us define two functions to do the conversions: day_of _year converts the month and day
into the day of the year, and nont h_day converts the day of the year into the month and day.
Since this latter function computes two values, the month and day arguments will be pointers:

nont h_day(1988, 60, &m &d)
setsmto 2 and d to 29 (February 29th).

These functions both need the same information, a table of the number of days in each month
(thirty days hath September ..."). Since the number of days per month differs for legp years
and non-leap years, it's easer to separate them into two rows of a two-dimensional array than
to keep track of what happens to February during computation. The array and the functions for
performing the transformations are as follows:

static char daytab[2][13] = {
{o, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
{o, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
H

/* day_of year: set day of year fromnonth & day */
int day_of_year(int year, int nonth, int day)

{
int i, |eap;
leap = year%l == 0 && year%d00 != 0 || year%l00 == O;
for (i = 1; i < nonth; i++4)
day += daytab[leap][i];
return day;
}

/* nonth_day: set nonth, day from day of year */
void nonth_day(int year, int yearday, int *prnonth, int *pday)
{

int i, |eap;
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leap = year%l == 0 && year%d00 != 0 || year%l00 == O;

for (i = 1; yearday > daytab[leap][i]; i++)
yearday -= daytab[leap][i];
*prmonth = i;

*pday = yearday;
}
Recall that the arithmetic value of alogical expression, such as the one for | eap, is either zero

(false) or one (true), so it can be used as a subscript of the array dayt ab.

The array dayt ab has to be external to both day_of _year and nont h_day, so they can both
use it. We made it char to illustrate a legitimate use of char for storing smal non-character
integers.

dayt ab is the first two-dimensional array we have dealt with. In C, atwo-dimensiona array is
redly a one-dimensiona array, each of whose elements is an array. Hence subscripts are
written as

daytab[i][]j] [* [row][col] */
rather than

daytab[i,j] [ * WWRONG */
Other than this notational distinction, atwo-dimensional array can be treated in much the same
way as in other languages. Elements are stored by rows, so the rightmost subscript, or column,
varies fastest as elements are accessed in storage order.

An array isinitidlized by a lig of initidlizers in braces, each row of a two-dimensiona array is
initialized by a corresponding sub-list. We started the array dayt ab with a column of zero so
that month numbers can run from the natural 1 to 12 instead of O to 11. Since spaceis not a a
premium here, thisis clearer than adjusting the indices.

If a two-dimensional array is to be passed to a function, the parameter declaration in the
function must include the number of columns; the number of rows is irrelevant, since what is
passed is, as before, a pointer to an array of rows, where each row isan array of 13 ints. In
this particular case, it is a pointer to objects that are arrays of 13 i nts. Thus if the array
dayt ab isto be passed to afunction f , the declaration of f would be:

f(int daytab[2][13]) { ... }
It could also be

f(int daytab[][13]) { ... }
since the number of rowsisirrelevant, or it could be

f(int (*daytab)[13]) { ... }
which says that the parameter is a pointer to an array of 13 integers. The parentheses are
necessary since brackets [] have higher precedence than *. Without parentheses, the
declaration

i nt *dayt ab[ 13]
is an array of 13 pointers to integers. More generally, only the first dimension (subscript) of an
array isfree; all the others have to be specified.

Section 5.12 has afurther discussion of complicated declarations.

Exercise 5-8. Thereisno error checking in day_of _year or nont h_day. Remedy this defect.

5.8 Initialization of Pointer Arrays
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Consider the problem of writing a function nont h_name(n), which returns a pointer to a
character string containing the name of the n-th month. This is an ideal application for an
internal st ati c array. mont h_nane contains a private array of character strings, and returns a
pointer to the proper one when called. This section shows how that array of names is
initialized.

The syntax is similar to previousinitiaizations:

/* nonth_nane: return name of n-th nmonth */
char *nonth_nane(int n)

{

static char *name[] = {
"I'l'l egal nonth",
"January", "February", "March",
"April", "May", "June",
"July", "August", "Septenber",
"CQctober", "Novenber", "Decenber"
b

return (n <1 || n>12) ? name[0] : nane[n];
}
The declaration of nane, which is an array of character pointers, isthe sasme as | i nept r inthe

sorting example. The initidizer is a lig of character strings, each is assigned to the
corresponding position in the array. The characters of the i -th string are placed somewhere,
and a pointer to them is stored in nane[i] . Since the size of the array name is not specified,
the compiler counts the initializers and fills in the correct number.

5.9 Pointersvs. Multi-dimensional Arrays

Newcomers to C are sometimes confused about the difference between a two-dimensional
array and an array of pointers, such as nane in the example above. Given the definitions

int a[10][20];

int *b[10];
then a[ 3]1[ 4] and b[ 3] [4] are both syntactically legal references to asingleint. But a isa
true two-dimensiona array: 200 i nt -sized locations have been set aside, and the conventional
rectangular subscript calculation 20 * row +col is used to find the element a[ r ow, col ] . For b,
however, the definition only allocates 10 pointers and does not initidize them; initiaization
must be done explicitly, either staticaly or with code. Assuming that each element of b does
point to a twenty-element array, then there will be 200 i nt s set aside, plus ten cdls for the
pointers. The important advantage of the pointer array is that the rows of the array may be of
different lengths. That is, each element of b need not point to a twenty-element vector; some
may point to two elements, some to fifty, and some to none at all.

Although we have phrased this discussion in terms of integers, by far the most frequent use of
arrays of pointers is to store character strings of diverse lengths, as in the function
mont h_nane. Compare the declaration and picture for an array of pointers:

char *name[] = { “Illegal nonth", "Jan", "Feb", "Mar" };
name:
. » Illegal month\0
. » Jan\0
. ~ Feb\0
. » Mar\0
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with those for atwo-dimensional array:

char ananme[][15] ={ "Illegal nonth", "Jan", "Feb", "Mar" };
aname :

|Illegal month\0 Jan\0 Feb\0 Mar\0

0 15 30 45

Exercise 5-9. Rewrite the routines day_of _year and nmont h_day with pointers instead of
indexing.

5.10 Command-line Arguments

In environments that support C, there is away to pass command-line arguments or parameters
to a program when it begins executing. When nai n is caled, it is caled with two arguments.
The first (conventionally called ar gc, for argument count) is the number of command-line
arguments the program was invoked with; the second (ar gv, for argument vector) is a pointer
to an array of character strings that contain the arguments, one per string. We customarily use
multiple levels of pointers to manipulate these character strings.

The smplest illustration is the program echo, which echoes its command-line arguments on a
single line, separated by blanks. That is, the command

echo hello, world
prints the output

hell o, world
By convention, ar gv[ 0] isthe name by which the program was invoked, so ar gc isat least 1.
If argc is 1, there are no command-line arguments after the program name. In the example
above, argc is 3, and argv[ 0], argv[ 1], and argv[ 2] are"echo", "hello,", and "worl d"
respectively. The first optional argument is argv[1] and the last is argv[argc-1];
additionally, the standard requires that ar gv[ ar gc] be anull pointer.

argv:
. - e ~ echo\0
. » hello,\0
. » world\0

Thefirst version of echo treats ar gv as an array of character pointers:

#i ncl ude <stdio. h>

/* echo command-|ine argunents; 1st version */
mai n(i nt argc, char *argv[])
{

int i;

for (i =1; i < argc; i++)

printf("%%", argv[i], (i < argc-1) 2 " " : "");
printf("\n");
return O;
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}
Since ar gv isa pointer to an array of pointers, we can manipulate the pointer rather than index
the array. This next variant is based on incrementing ar gv, which is a pointer to pointer to
char , while ar gc is counted down:

#i ncl ude <stdi o. h>

/* echo command-|ine argunents; 2nd version */
mai n(i nt argc, char *argv[])

while (--argc > 0)

printf("%%", *++argv, (argc > 1) 2 " " : "");
printf("\n");
return O;

}
Since ar gv is a pointer to the beginning of the array of argument strings, incrementing it by 1
(++argv) makes it point a the origina argv[1] instead of argv[0]. Each successive
increment moves it along to the next argument; * ar gv is then the pointer to that argument. At
the same time, ar gc is decremented; when it becomes zero, there are no arguments left to
print.

Alternatively, we could writethe pri nt f statement as

printf((argc > 1) ? "% " : "9%", *++argv);
This shows that the format argument of printf can be an expression too.

As a second example, let us make some enhancements to the pattern-finding program from
Section 4.1. If you recal, we wired the search pattern deep into the program, an obviousy
unsatisfactory arrangement. Following the lead of the UNIX program gr ep, let us enhance the
program so the pattern to be matched is specified by the first argument on the command line.

#i ncl ude <stdio. h>
#i ncl ude <string. h>
#defi ne MAXLI NE 1000

int getline(char *line, int nmax);

/* find: print lines that match pattern from 1lst arg */
mai n(int argc, char *argv[])

char |ine[ MAXLI NE] ;
int found =

if (argc !'= 2)
printf("Usage: find pattern\n");

el se
while (getline(line, MAXLINE) > 0)
if (strstr(line, argv[1]) != NULL) {
printf("9%", line);
f ound++;

return found;

}
The standard library function strstr(s,t) returns a pointer to the first occurrence of the
string t inthe string s, or NULL if thereisnone. It isdeclared in <st ri ng. h>.

The model can now be elaborated to illustrate further pointer constructions. Suppose we want
to alow two optional arguments. One says ~print dl the lines except those that match the
pattern;" the second says " precede each printed line by its line number."
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A common convention for C programs on UNIX systems is that an argument that begins with
aminus sign introduces an optional flag or parameter. If we choose - x (for “except") to signa
theinversion, and - n (" number") to request line numbering, then the command

find -x -npattern
will print each line that doesn't match the pattern, preceded by its line number.

Optional arguments should be permitted in any order, and the rest of the program should be
independent of the number of arguments that we present. Furthermore, it is convenient for
usersif option arguments can be combined, asin

find -nx pattern
Hereis the program:

#i ncl ude <stdio. h>
#i ncl ude <string. h>
#defi ne MAXLI NE 1000

int getline(char *line, int nmax);

/* find: print lines that match pattern from 1st arg */
mai n(int argc, char *argv[])
{

char |ine[ MAXLI NE] ;

long lineno = 0;

int ¢, except =0, nunber = 0, found = O;

while (--argc > 0 && (*++argv)[0] == "-")
while (c = *++argv[0])
switch (c¢) {
case 'x':
except = 1;
br eak;
case 'n':
nunber
br eak;
defaul t:
printf("find: illegal option %\n", c);
argc = 0;
found = -1,
br eak;

1

}
if (argc !'=1)
printf("Usage: find -x -n pattern\n");
el se
while (getline(line, MAXLINE) > 0) {
| i neno++;
if ((strstr(line, *argv) != NULL) != except) {
i f (numnber)
printf("%d:", |ineno);
printf("9%", line);
f ound++;

}

} return found;
ar gc is decremented and ar gv is incremented before each optiona argument. At the end of the
loop, if there are no errors, argc tells how many arguments remain unprocessed and ar gv
points to the first of these. Thus argc should be 1 and *argv should point a the pattern.
Notice that * ++ar gv is a pointer to an argument string, o (*++ar gv) [ 0] isitsfirst character.
(An aternate vaid form would be **++ar gv.) Because [] binds tighter than * and ++, the
parentheses are necessary; without them the expression would be taken as *++(argv[0]). In
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fact, that is what we have used in the inner loop, where the task is to walk aong a specific
argument string. In the inner loop, the expression *++argv[0] increments the pointer
argv[0] !

It is rare that one uses pointer expressions more complicated than these; in such cases,
breaking them into two or three steps will be more intuitive.

Exercise 5-10. Write the program expr , which evaluates a reverse Polish expression from the
command line, where each operator or operand is a separate argument. For example,

expr 2 34 + *
evaluates 2 * (3+4).

Exercise 5-11. Modify the program ent ab and det ab (written as exercises in Chapter 1) to
accept alist of tab stops as arguments. Use the default tab settingsif there are no arguments.

Exercise 5-12. Extend ent ab and det ab to accept the shorthand

entab -m +n
to mean tab stops every n columns, starting a column m. Choose convenient (for the user)
default behavior.

Exercise 5-13. Write the program t ai | , which prints the last n lines of its input. By default, n
isset to 10, let us say, but it can be changed by an optiona argument so that

tail -n
prints the last n lines. The program should behave rationally no matter how unreasonable the
input or the value of n. Write the program so it makes the best use of available storage; lines
should be stored as in the sorting program of Section 5.6, not in a two-dimensiona array of
fixed size.

5.11 Pointersto Functions

In C, afunction itsalf is not a variable, but it is possible to define pointers to functions, which
can be assigned, placed in arrays, passed to functions, returned by functions, and so on. We
will illustrate this by modifying the sorting procedure written earlier in this chapter so that if
the optional argument -n is given, it will sort the input lines numericaly instead of
lexicographically.

A sort often consists of three parts - a comparison that determines the ordering of any pair of
objects, an exchange that reverses their order, and a sorting algorithm that makes comparisons
and exchanges until the objects are in order. The sorting agorithm is independent of the
comparison and exchange operations, so by passng different comparison and exchange
functions to it, we can arrange to sort by different criteria. This is the approach taken in our
new sort.

Lexicographic comparison of two lines is done by strcnp, as before; we will aso need a
routine nuncnp that compares two lines on the basis of numeric value and returns the same
kind of condition indication as st r cnp does. These functions are declared ahead of nai n and a
pointer to the appropriate one is passed to gsort. We have skimped on error processing for
arguments, so as to concentrate on the main issues.

#i ncl ude <stdio. h>
#i ncl ude <string. h>

#defi ne MAXLI NES 5000 /* max #lines to be sorted */
char *lineptr[ MAXLINES]; /* pointers to text lines */
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int readlines(char *lineptr[], int nlines);
void witelines(char *lineptr[], int nlines);

void qgsort(void *lineptr[], int left, int right,
int (*conp)(void *, void *));
i nt nuncnp(char *, char *);

/* sort input lines */
mai n(i nt argc, char *argv[])

{
i nt nlines; /* nunber of input lines read */
int numeric = 0; [* 1 if numeric sort */
if (argc > 1 && strcnp(argv[1], "-n") == 0)
nuneric = 1;
if ((nlines = readlines(lineptr, MAXLINES)) >= 0) {
gsort((void**) lineptr, O, nlines-1,
(int (*)(void*,void*))(nuneric ? nuncnp : strcnp));
witelines(lineptr, nlines);
return O;
} else {
printf("input too big to sort\n");
return 1,
}
}

In the call to gsort, strcnp and nuncnp are addresses of functions. Since they are known to
be functions, the & is not necessary, in the same way that it is not needed before an array name.

We have written gsort S0 it can process any data type, not just character strings. As indicated
by the function prototype, gsort expects an array of pointers, two integers, and a function
with two pointer arguments. The generic pointer type void * is used for the pointer
arguments. Any pointer can be cast to voi d * and back again without loss of information, so
we can cal gsort by casting arguments to void *. The elaborate cast of the function
argument casts the arguments of the comparison function. These will generaly have no effect
on actual representation, but assure the compiler that al iswell.

/* gsort: sort v[left]...v[right] into increasing order */
void qgsort(void *v[], int left, int right,
int (*conp)(void *, void *))

(O
int i, last;
voi d swap(void *v[], int, int);
if (left >=right) /[* do nothing if array contains */
return; /[* fewer than two el enents */
swap(v, left, (left + right)/2);
last = left;
for (i = left+l;, i <=right; i++)
if ((*comp)(v[i], v[left]) < 0)
swap(v, ++last, i);
swap(v, left, last);
gsort(v, left, last-1, conp);
gsort(v, last+1, right, comp);
}

The declarations should be studied with some care. The fourth parameter of gsort is

int (*conp)(void *, void *)
which says that conp is a pointer to a function that has two voi d * arguments and returns an
int.

The use of conp intheline

if ((*comp)(v[i], v[left]) < 0)
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is consistent with the declaration: conp is apointer to afunction, * conp is the function, and

(*conp) (v[i], v[left])
is the cdl to it. The parentheses are needed so the components are correctly associated;
without them,

int *conp(void *, void *) /* VWRONG */
saysthat conp isafunction returning a pointer to ani nt , which is very different.
We have aready shown strcnp, which compares two strings. Here is nuncnp, which
compares two strings on aleading numeric value, computed by calling at of :

#i ncl ude <stdlib. h>

/* nuntnp: conpare sl and s2 nunerically */
i nt nuncnp(char *sl1, char *s2)

doubl e v1, v2;

vl = atof(sl);
v2 = atof(s2);
if (vl <v2)
return -1;
else if (vl > v2)
return 1;
el se
return O;

}
The swap function, which exchanges two pointers, is identical to what we presented earlier in
the chapter, except that the declarations are changed to voi d *.

void swap(void *v[], int i, int j;)
void *tenp;
v[i];

v[jl;
tenp;

tenp
v[i]
viil

A variety of other options can be added to the sorting program; some make chalenging
EXErcises.

Exercise 5-14. Modify the sort program to handle a-r flag, which indicates sorting in reverse
(decreasing) order. Be sure that - r workswith - n.

Exercise 5-15. Add the option -f to fold upper and lower case together, so that case
distinctions are not made during sorting; for example, a and A compare equal.

Exercise 5-16. Add the -d (" directory order") option, which makes comparisons only on
letters, numbers and blanks. Make sure it works in conjunction with - f .

Exercise 5-17. Add a field-searching capability, so sorting may bee done on fields within lines,
each field sorted according to an independent set of options. (The index for this book was
sorted with - df for theindex category and - n for the page numbers.)

5.12 Complicated Declarations

C is sometimes castigated for the syntax of its declarations, particularly ones that involve
pointers to functions. The syntax is an attempt to make the declaration and the use agree; it
works well for smple cases, but it can be confusing for the harder ones, because declarations
cannot be read left to right, and because parentheses are over-used. The difference between
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int *f(); [* f: function returning pointer to int */
and

int (*pf)(); /* pf: pointer to function returning int */
illustrates the problem: * is a prefix operator and it has lower precedence than (), o0
parentheses are necessary to force the proper association.

Although truly complicated declarations rarely arise in practice, it isimportant to know how to
understand them, and, if necessary, how to create them. One good way to synthesize
declarations is in smal steps with typedef, which is discussed in Section 6.7. As an
alternative, in this section we will present a pair of programs that convert from vaid C to a
word description and back again. The word description reads |eft to right.

The firgt, dcl , is the more complex. It converts a C declaration into a word description, as in
these examples:

char **argv
argv: pointer to char
int (*daytab)[ 13]
daytab: pointer to array[13] of int
i nt *dayt ab[ 13]
daytab: array[13] of pointer to int
void *conp()
conp: function returning pointer to void
void (*conp) ()
conp: pointer to function returning void
char (*(*xO0)[DO |
x: function returning pointer to array[] of
pointer to function returning char
char (*(*x[3])())[5] _ _
x: array[3] of pointer to function returning
pointer to array[5] of char

dcl is based on the grammar that specifies a declarator, which is spelled out precisaly in
Appendix A, Section 8.5; thisisasimplified form:

dcl : optional *'s direct-dc
di rect-dcl nane

(dcl)

di rect-dcl ()

direct-dcl [optional size]

In words, a dcl is a direct-dcl, perhaps preceded by *'s. A direct-dcl is a name, or a
parenthesized dcl, or adirect-dcl followed by parentheses, or a direct-dcl followed by brackets
with an optional size.

This grammar can be used to parse functions. For instance, consider this declarator:

(*pfal]) ()
pf a will be identified as a name and thus as a direct-dcl. Then pfa[] isaso adirect-dcl. Then

*pfa[] isrecognized asadcl, so (*pfa[]) isadirect-dcl. Then (*pfa[]) () isadirect-dcl
and thus a dcl. We can also illustrate the parse with a tree like this (where direct-dcl has been
abbreviated to dir-dcl):
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name

dir-del

dir-del

del

dir-del

dir-del

del

The heart of the dcl program is a pair of functions, dcl and di rdcl , that parse a declaration
according to this grammar. Because the grammar is recursively defined, the functions call each
other recursively as they recognize pieces of a declaration; the program is called a recursive-

descent parser.
/* dcl: parse a declarator */
voi d dcl (voi d)
{
int ns;
for (ns = 0; gettoken() =="'*'; ) /* count *'s */
ns++;
dirdcl ();
while (ns-- > 0)
strcat(out, " pointer to");
}
/* dirdcl: parse a direct declarator */

voi d dirdcl (void)

{

int type;

if (tokentype == "(") { [* ( dcl ) */
del () ;
if (tokentype !'=")")

printf("error: mssing )\n");
} else if (tokentype == NAME) /* variable nanme */
strcpy(nane, token);
el se
printf("error: expected nane or (dcl)\n");
while ((type=gettoken()) == PARENS || type == BRACKETS)
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if (type == PARENS)

strcat(out, " function returning");
el se {

strcat(out, " array");

strcat (out, token);

strcat(out, " of");

}
}
Since the programs are intended to be illustrative, not bullet-proof, there are significant
restrictions on dcl . It can only handle a smple data type line char or i nt . It does not handle
argument types in functions, or qualifiers like const . Spurious blanks confuse it. It doesn't do

much error recovery, so invaid declarations will aso confuse it. These improvements are left
as exercises.

Here are the global variables and the main routine:

#i ncl ude <stdio. h>
#i ncl ude <string. h>
#i ncl ude <ctype. h>

#defi ne MAXTOKEN 100
enum { NAME, PARENS, BRACKETS };

voi d dcl (void);
voi d dirdcl (void);

i nt gettoken(void);

i nt tokentype; /* type of |ast token */

char t oken[ MAXTOKEN ; /* last token string */

char nanme[ MAXTOKEN ; [* identifier nane */

char dat atype[ MAXTOKEN]; /* data type = char, int, etc. */
char out[1000];

main() /* convert declaration to words */

whil e (gettoken() !'= EOF) { /* 1st token on line */
strcpy(datatype, token); /* is the datatype */
out[0] = "\0";
decl (); [* parse rest of line */
if (tokentype !'="\n")

printf("syntax error\n");
printf("%: % %\n", nanme, out, datatype);

return O;
}
The function get t oken skips blanks and tabs, then finds the next token in the input; a *token"
is aname, a pair of parentheses, a pair of brackets perhaps including a number, or any other
single character.

int gettoken(void) /* return next token */

int ¢, getch(void);
voi d ungetch(int);
char *p = token

while ((c = getch()) ==" " || == "\t")

if (c="(){
if ((c =getch()) ==")") {
strcpy(token, "()");
return tokentype = PARENS
} else {
unget ch(c);
return tokentype = "'(";
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}
} elseif (¢ =="[") {
for (*p++ = c; (*p++ = getch()) !'="]"; )

*p = '\0';
return tokentype = BRACKETS;
} else if (isalpha(c)) {
for (*p++ = c; isalnun{c = getch()); )
*p++ = c;
*p='\0,
unget ch(c);
return tokentype
} else
return tokentype

NAME

C;

}
get ch and unget ch are discussed in Chapter 4.

Going in the other direction is easier, especialy if we do not worry about generating redundant
parentheses. The program undcl converts a word description like “x is a function returning a
pointer to an array of pointers to functions returning char ," which we will express as

x () * [1 * () char
to

char (*(*x())[1)()
The abbreviated input syntax lets us reuse the get t oken function. undcl aso uses the same

externd variables asdcl does.

/* undcl: convert word descriptions to declarations */
mai n()
int type;

char tenp[ MAXTOKEN ;

while (gettoken() != EOF) {
strcpy(out, token);
while ((type = gettoken()) !="'\n")

if (type == PARENS || type == BRACKETYS)
strcat (out, token);

else if (type =="*") {
sprintf(tenmp, "(*%)", out);
strcpy(out, tenp);

} else if (type == NAME) {
sprintf(tenp, "% %", token, out);
strcpy(out, tenp);

} else
printf("invalid input at %\n", token);

return O;

}
Exercise 5-18. Make dcl recover from input errors.

Exercise 5-19. Modify undcl so that it does not add redundant parentheses to declarations.

Exercise 5-20. Expand dc!l to handle declarations with function argument types, quaifiers like
const , and so on.
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Chapter 6 - Structures

A structure is a collection of one or more variables, possibly of different types, grouped
together under a single name for convenient handling. (Structures are called ““records' in some
languages, notably Pascal.) Structures help to organize complicated data, particularly in large
programs, because they permit a group of related variables to be treated as a unit instead of as
Separate entities.

One traditional example of a structure is the payroll record: an employee is described by a set
of attributes such as name, address, social security number, salary, etc. Some of these in turn
could be structures: a name has severa components, as does an address and even a saary.
Another example, more typical for C, comes from graphics: a point is a pair of coordinate, a
rectangleis a pair of points, and so on.

The main change made by the ANSI standard is to define structure assignment - structures may
be copied and assigned to, passed to functions, and returned by functions. This has been
supported by most compilers for many years, but the properties are now precisely defined.
Automatic structures and arrays may now also be initialized.

6.1 Basics of Structures

Let us create a few structures suitable for graphics. The basic object is a point, which we will
assume has an x coordinate and a y coordinate, both integers.

(0,0)

The two components can be placed in a structure declared like this:

struct point {
int x;
int vy;
H _
The keyword st r uct introduces a structure declaration, which isalist of declarations enclosed
in braces. An optional name called a structure tag may follow the word st r uct (as with poi nt
here). The tag names this kind of structure, and can be used subsequently as a shorthand for
the part of the declaration in braces.

The variables named in a structure are called members. A structure member or tag and an
ordinary (i.e., non-member) variable can have the same name without conflict, snce they can
aways be distinguished by context. Furthermore, the same member names may occur in
different structures, although as a matter of style one would normally use the same names only
for closely related objects.

A struct declaration defines atype. The right brace that terminates the list of members may
be followed by alist of variables, just asfor any basic type. That is,
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struct { ... } X, vy, z;
is syntactically analogous to

int x, vy, z;
in the sense that each statement declares x, y and z to be variables of the named type and
causes space to be set aside for them.

A structure declaration that is not followed by a lig of variables reserves no storage; it merely
describes a template or shape of a structure. If the declaration is tagged, however, the tag can
be used later in definitions of instances of the structure. For example, given the declaration of
poi nt above,

struct point pt;
defines avariable pt which is a structure of type struct poi nt. A structure can be initialized
by following its definition with a lis of initidizers, each a constant expression, for the
members:

struct maxpt = { 320, 200 };
An automatic structure may also be initidlized by assgnment or by caling a function that
returns a structure of the right type.

A member of a particular structure is referred to in an expression by a construction of the form
structure-name.member

The structure member operator ~." connects the structure name and the member name. To
print the coordinates of the point pt , for instance,

printf("%l, %", pt.x, pt.y);
or to compute the distance from the origin (0,0) to pt ,

doubl e dist, sqrt(double);

dist = sqrt((double)pt.x * pt.x + (double)pt.y * pt.y);
Structures can be nested. One representation of a rectangle is a pair of points that denote the
diagonally opposite corners:

Y Pt 2

pti

1!
3

struct rect {
struct point ptl;
struct point pt2;
3
Therect structure contains two poi nt structures. If we declare scr een as

struct rect screen;
then

screen. pt 1. x
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refers to the x coordinate of the pt 1 member of scr een.

6.2 Structures and Functions

The only lega operations on a structure are copying it or assigning to it as a unit, taking its
address with &, and accessing its members. Copy and assignment include passing arguments to
functions and returning values from functions as well. Structures may not be compared. A
structure may be initidized by a list of constant member values, an automatic structure may
also beinitialized by an assgnment.

Let us investigate structures by writing some functions to manipulate points and rectangles.
There are a least three possible approaches. pass components separately, pass an entire
structure, or pass a pointer to it. Each has its good points and bad points.

Thefirst function, makepoi nt , will take two integers and return a poi nt structure:

/* makepoint: rmake a point fromx and y conponents */
struct point makepoint(int x, int y)

{
struct point tenp;
tenp. x = X;
temp.y =y,
return tenp;
}

Notice that there is no conflict between the argument name and the member with the same
name; indeed the re-use of the names stresses the relationship.

makepoi nt can now be used to initialize any structure dynamically, or to provide structure
arguments to a function:

struct rect screen;
struct point mddle;
struct point makepoint(int, int);

screen. pt1l = nakepoi nt (0, 0);

screen. pt 2 = nmakepoi nt ( XMAX, YMAX);

m ddl e = makepoint((screen.ptl.x + screen.pt2.x)/2,
(screen.ptl.y + screen.pt2.y)/2);

The next step is a set of functions to do arithmetic on points. For instance,

/* addpoints: add two points */
struct addpoi nt (struct point pl, struct point p2)

{
pl. x += p2.x;
pl.y += p2.y;
return pil;

}

Here both the arguments and the return value are structures. We incremented the components
in p1 rather than using an explicit temporary variable to emphasize that structure parameters
are passed by value like any others.

As another example, the function pti nrect tests whether a point is insde a rectangle, where
we have adopted the convention that a rectangle includes its left and bottom sides but not its
top and right sides:

[* ptinrect: return 1 if pinr, O0if not */
int ptinrect(struct point p, struct rect r)

return p.x >=r.ptl.x

&& p.
&& p.y >=r.ptl.y && p.
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This assumes that the rectangle is presented in a standard form where the pt 1 coordinates are
less than the pt 2 coordinates. The following function returns a rectangle guaranteed to be in
canonical form:

#define mn(a, b) ((a) < (b) ? (a) : (b))
#define max(a, b) ((a) > (b) ? (a) : (b))

/* canonrect: canonicalize coordinates of rectangle */
struct rect canonrect(struct rect r)

{
struct rect tenp;
tenp.ptl.x = min(r.ptl.x, r.pt2.x);
tenp.ptl.y = min(r.ptl.y, r.pt2.y);
tenp.pt2.x = max(r.ptl.x, r.pt2.x);
tenp.pt2.y = max(r.ptl.y, r.pt2.y);
return tenp;

}

If alarge structure is to be passed to a function, it is generally more efficient to pass a pointer
than to copy the whole structure. Structure pointers are just like pointers to ordinary variables.
The declaration

struct point *pp;
says that pp IS a pointer to a structure of type struct point. If pp points to a poi nt
structure, *pp is the structure, and (*pp).x and (*pp).y are the members. To use pp, we
might write, for example,

struct point origin, *pp;

pp = &origin;

printf("originis (%, %)\n", (*pp).X, (*pp).Vy);
The parentheses are necessary in (*pp) . x because the precedence of the structure member
operator . is higher then *. The expression *pp. x means *(pp. x) , which is illega here
because x is not a pointer.

Pointers to structures are so frequently used that an alternative notation is provided as a
shorthand. If p isapointer to a structure, then

p- >menber - of - structure
refers to the particular member. So we could write instead

printf("originis (%, %l)\n", pp->x, pp->Yy);
Both . and - > associate from left to right, so if we have

struct rect r, *rp = &;
then these four expressions are equival ent:

r.ptl.x

rp->ptl. x

(r.ptl).x

(rp->ptl).x
The structure operators. and - >, together with () for function callsand [] for subscripts, are
a the top of the precedence hierarchy and thus bind very tightly. For example, given the
declaration

struct {
int |en;
char *str;
}ores
then
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++p- >l en
increments | en, not p, because the implied parenthesization is ++( p- >l en) . Parentheses can be
used to ater binding: (++p)->len increments p before accessing | en, and (p++)->len
increments p afterward. (This last set of parentheses is unnecessary.)

In the same way, *p->str fetches whatever str points to; *p- >st r ++ increments str after
accessing whatever it pointsto (just like *s++); (*p- >st r) ++ increments whatever str points
to; and * p++- >st r increments p after accessing whatever st r pointsto.

6.3 Arraysof Structures

Consider writing a program to count the occurrences of each C keyword. We need an array of
character strings to hold the names, and an array of integers for the counts. One possibility is
to use two paralléel arrays, keywor d and keycount , asin

char *keywor d[ NKEYS] ;
i nt keycount [ NKEYS] ;

But the very fact that the arrays are parallel suggests a different organization, an array of
structures. Each keyword isa pair:

char *word;
int cout;

and there is an array of pairs. The structure declaration

struct key {
char *word;
int count;

} keytab[ NKEYS] ;

declares a structure type key, defines an array keyt ab of structures of this type, and sets aside
storage for them. Each element of the array is a structure. This could also be written

struct key {
char *word;
int count;

b

struct key keytab[ NKEYS] ;
Since the structure keyt ab contains a constant set of names, it is easiest to make it an external
variable and initidize it once and for dl when it is defined. The structure initidization is
analogous to earlier ones - the definition is followed by alist of initializers enclosed in braces:

struct key {
char *word;

int count;

} keytab[] = {
"auto", O,
"break", O,
"case", O,
"char", 0,
"const", O,
"continue", O,
"default", O,
[* ... %/
"unsi gned", O,
"void", O,
"volatile", O,
"while", O

b
The initidizers are listed in pairs corresponding to the structure members. It would be more
precise to enclose the initializers for each "row" or structure in braces, asin

{ "auto", 0 },
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{ "break", 0},
{ "case", 0 },

but mner braces are not necessary when the initializers are ssimple variables or character strings,
and when dl are present. As usual, the number of entriesin the array keyt ab will be computed
if theinitializers are present and the [] isleft empty.

The keyword counting program begins with the definition of keyt ab. The main routine reads
the input by repeatedly calling a function get wor d that fetches one word at a time. Each word
islooked up in keyt ab with a version of the binary search function that we wrote in Chapter 3.
The list of keywords must be sorted in increasing order in the table.

#i ncl ude <stdio. h>
#i ncl ude <ctype. h>
#i ncl ude <string. h>

#def i ne MAXWORD 100

int getword(char *, int);
i nt binsearch(char *, struct key *, int);

/* count C keywords */
mai n()

int n;
char wor d[ MAXWORD] ;

whil e (getword(word, MAXWORD) != EOF)
if (isalpha(word[0]))
if ((n = binsearch(word, keytab, NKEYS)) >= 0)
keyt ab[ n] . count ++;
for (n = 0; n < NKEYS; n++)
i f (keytab[n].count > 0)
printf("%d %\n",
keyt ab[ n] . count, keytab[n].word);
return O;

}

/* binsearch: find word in tab[O0]...tab[n-1] */
i nt binsearch(char *word, struct key tab[], int n)

{

i nt cond;
int low, high, md;

| ow = O;
high = n - 1;
while (low <= high) {
md = (low+high) / 2;
if ((cond = strcnmp(word, tab[md].word)) < 0)
high = md - 1;
else if (cond > 0)
low = md + 1;
el se
return md;

return -1;
}
We will show the function get wor d in @ moment; for now it suffices to say that each cal to
get wor d finds aword, which is copied into the array named as its first argument.

The quantity NKEYS is the number of keywords in keyt ab. Although we could count this by
hand, it's a lot easier and safer to do it by machine, especidly if the list is subject to change.
One possibility would be to terminate the list of initializers with a null pointer, then loop along
keyt ab until the end is found.
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But thisis more than is needed, since the size of the array is completely determined at compile
time. The size of the array is the size of one entry times the number of entries, so the number
of entriesisjust

sizeof keytab / Sizeof struct key

C provides a compile-time unary operator caled si zeof that can be used to compute the size
of any object. The expressions

si zeof object
and

si zeof (type nane)
yidd an integer equal to the size of the specified object or type in bytes. (Strictly, si zeof
produces an unsigned integer value whose type, si ze_t , is defined in the header <st ddef . h>.)
An object can be a variable or array or structure. A type name can be the name of a basic type
likei nt or doubl e, or aderived type like a structure or a pointer.

In our case, the number of keywords is the size of the array divided by the size of one element.
This computation isused in a#def i ne statement to set the value of NKEYS:

#defi ne NKEYS (sizeof keytab / sizeof (struct key))
Another way to write thisis to divide the array size by the size of a specific element:

#defi ne NKEYS (sizeof keytab / sizeof (keytab[0]))
This has the advantage that it does not need to be changed if the type changes.

A si zeof cannot beused ina#if line, because the preprocessor does not parse type names.
But the expression in the #def i ne is not evaluated by the preprocessor, so the code here is

legdl.

Now for the function get wor d. We have written a more general get wor d than is necessary for
this program, but it is not complicated. get word fetches the next ~“word" from the input,
where a word is either a string of letters and digits beginning with a letter, or a single non-
white space character. The function value is the first character of the word, or ECF for end of
file, or the character itself if it is not alphabetic.

/* getword: get next word or character frominput */
int getword(char *word, int lim

int ¢, getch(void);
voi d ungetch(int);
char *w = word

while (isspace(c = getch()))

if (c !'= EOF)
*w+ = C;
if (lisalpha(c)) {
*w="\0";
return c;
}
for (; --lim> 0; wt+)
if (lisalnun(*w = getch())) {
unget ch(*w) ;
br eak;

*w="\0";
return word[0];
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get wor d uses the get ch and unget ch that we wrote in Chapter 4. When the collection of an
alphanumeric token stops, getword has gone one character too far. The call to ungetch
pushes that character back on the input for the next cal. get wor d also usesi sspace to skip
whitespace, i sal pha to identify letters, and i sal numto identify letters and digits; dl are from
the standard header <ct ype. h>.

Exercise 6-1. Our version of get wor d does not properly handle underscores, string constants,
comments, or preprocessor control lines. Write a better version.

6.4 Pointersto Structures

To illustrate some of the considerations involved with pointers to and arrays of structures, let
us write the keyword-counting program again, this time using pointers instead of array indices.

The externa declaration of keytab need not change, but main and bi nsearch do need
modification.

#i ncl ude <stdio. h>
#i ncl ude <ctype. h>
#i ncl ude <string. h>
#defi ne MAXWORD 100

int getword(char *, int);
struct key *binsearch(char *, struct key *, int);

/* count C keywords; pointer version */
mai n()

char wor d[ MAXWORD] ;
struct key *p;

whil e (getword(word, MAXWORD) != EOF)
if (isalpha(word[0]))
i f ((p=binsearch(word, keytab, NKEYS)) != NULL)
p- >count ++;
= keytab; p < keytab + NKEYS; p++)
(p->count > 0)
printf("%ld 9%\n", p->count, p->word);
return O;

for (p
i f

}

/* binsearch: find word in tab[O0]...tab[n-1] */
struct key *binsearch(char *word, struck key *tab, int n)
{

i nt cond;

struct key *low = & ab[0];

struct key *high = & ab[n];

struct key *md;

while (low < high) {

md=1low+ (high-low [/ 2;

if ((cond = strcnmp(word, nid->word)) < 0)
hi gh = m d;

else if (cond > 0)
low = md + 1;

el se
return md;

}
return NULL,;
}
There are several things worthy of note here. First, the declaration of bi nsear ch must indicate

that it returns a pointer to struct key instead of an integer; this is declared both in the
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function prototype and in bi nsear ch. If bi nsear ch finds the word, it returns a pointer to it; if
it fails, it returns NULL.

Second, the elements of keytab are now accessed by pointers. This requires significant
changesin bi nsear ch.

The initidizers for | ow and hi gh are now pointers to the beginning and just past the end of the
table.

The computation of the middle element can no longer be simply

md = (I owthigh) / 2 I * \RONG */
because the addition of pointers is illegal. Subtraction is lega, however, so hi gh-1ow is the
number of elements, and thus

mid=low+ (high-low) / 2
sets i d to the element halfway between | owand hi gh.

The most important change is to adjust the algorithm to make sure that it does not generate an
illega pointer or attempt to access an element outside the array. The problem isthat &t ab[ - 1]

and &t ab[ n] are both outside the limits of the array t ab. The former is strictly illegal, and it is
illega to dereference the latter. The language definition does guarantee, however, that pointer
arithmetic that involves the first dement beyond the end of an array (that is, & ab[n]) will
work correctly.

In mai n we wrote

for (p = keytab; p < keytab + NKEYS;, p++)
If p is a pointer to a structure, arithmetic on p takes into account the size of the structure, so
p++ increments p by the correct amount to get the next element of the array of structures, and
the test stops the loop at the right time.

Don't assume, however, that the size of a structure is the sum of the sizes of its members.
Because of dignment requirements for different objects, there may be unnamed "holes’ in a
structure. Thus, for instance, if achar isonebyteand ani nt four bytes, the structure

struct {
char c;
int i;
b

might well require eight bytes, not five. The si zeof operator returns the proper value.

Findly, an aside on program format: when a function returns a complicated type like a
structure pointer, asin

struct key *binsearch(char *word, struct key *tab, int n)
the function name can be hard to see, and to find with a text editor. Accordingly an aternate
style is sometimes used:

struct key *
bi nsearch(char *word, struct key *tab, int n)

Thisis amatter of persona taste; pick the form you like and hold to it.

6.5 Sdf-referential Structures

Suppose we want to handle the more general problem of counting the occurrences of all the
words in some input. Since the list of words isn't known in advance, we can't conveniently sort
it and use a binary search. Yet we can't do alinear search for each word as it arrives, to see if
it's aready been seen; the program would take too long. (More precisely, its running time is
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likely to grow quadratically with the number of input words.) How can we organize the data to
copy efficiently with alist or arbitrary words?

One solution is to keep the set of words seen so far sorted at dl times, by placing each word
into its proper position in the order as it arrives. This shouldn't be done by shifting words in a
linear array, though - that aso takes too long. Instead we will use a data structure called a
binary tree.

The tree contains one “"node" per distinct word; each node contains
A pointer to the text of the word,
A count of the number of occurrences,
A pointer to the left child node,

A pointer to the right child node.
No node may have more than two children; it might have only zero or one.

The nodes are maintained so that a any node the left subtree contains only words that are
lexicographically less than the word at the node, and the right subtree contains only words that
are greater. This is the tree for the sentence ""now is the time for al good men to come to the
aid of their party", as built by inserting each word as it is encountered:

18 /HGW\the
/N N

men of time

PANRNEAN

all  good party their to
aid

cCOTne

To find out whether a new word is already in the tree, start at the root and compare the new
word to the word stored at that node. If they match, the question is answered affirmatively. If
the new record is less than the tree word, continue searching at the left child, otherwise at the
right child. If there is no child in the required direction, the new word is not in the tree, and in
fact the empty dot is the proper place to add the new word. This process is recursive, since the
search from any node uses a search from one of its children. Accordingly, recursive routines
for insertion and printing will be most natural.

Going back to the description of anode, it is most conveniently represented as a structure with
four components:

struct tnode { /* the tree node: */
char *word; [* points to the text */
int count; /* nunber of occurrences */
struct tnode *left; /* left child */

struct tnode *right; /* right child */
H
This recursive declaration of a node might look chancy, but it's correct. It is illegd for a
structure to contain an instance of itself, but
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struct tnode *left;
declares| ef t to be apointer to at node, not at node itsalf.

Occasionally, one needs a variation of self-referential structures: two structures that refer to
each other. The way to handle thisis:

struct t {

éi}uct S *p; /[* p points to an s */
iiruct s {
} éi}uct t *q; /[* q points to at */

The code for the whole program is surprisingly small, given a handful of supporting routines
like get wor d that we have aready written. The main routine reads words with get wor d and
installs them in the tree with addt r ee.

#i ncl ude <stdio. h>
#i ncl ude <ctype. h>
#i ncl ude <string. h>

#defi ne MAXWORD 100

struct tnode *addtree(struct tnode *, char *);
void treeprint(struct tnode *);

int getword(char *, int);

/* word frequency count */
mai n()

struct tnode *root;
char wor d[ MAXWORD] ;

root = NULL;
whil e (getword(word, MAXWORD) != EOF)
if (isalpha(word[0]))
root = addtree(root, word);
treeprint(root);
return O;
}

The function addt r ee is recursive. A word is presented by mai n to the top level (the root) of
the tree. At each stage, that word is compared to the word aready stored at the node, and is
percolated down to either the left or right subtree by a recursive cal to adt ree. Eventualy,
the word either matches something already in the tree (in which case the count is incremented),
or anull pointer is encountered, indicating that a node must be created and added to the tree. If
anew nodeis created, addt r ee returns a pointer to it, which isinstalled in the parent node.

struct tnode *talloc(void);
char *strdup(char *);

/* addtree: add a node with w, at or below p */
struct treenode *addtree(struct tnode *p, char *w)

-
i nt cond;
if (p == NULL) { /* a new word has arrived */
p = talloc(); /* make a new node */

p->word = strdup(w);
p- >count = 1;
p->left = p->right = NULL;
} else if ((cond = strcnmp(w, p->word)) == 0)
p- >count ++; /* repeated word */
else if (cond < 0) /* less than into | eft subtree */
p->left = addtree(p->left, w;



116

el se /* greater than into right subtree */
p->right = addtree(p->right, w;
return p;

}
Storage for the new node is fetched by a routine t al | oc, which returns a pointer to a free

space suitable for holding a tree node, and the new word is copied into a hidden space by
strdup. (We will discuss these routines in a moment.) The count is initialized, and the two
children are made null. This part of the code is executed only at the leaves of the tree, when a
new node is being added. We have (unwisely) omitted error checking on the values returned by
strdupandtall oc

treeprint printsthe treein sorted order; a each node, it prints the left subtree (all the words
less than this word), then the word itself, then the right subtree (al the words greater). If you
feel shaky about how recursion works, smulate t r eepri nt as it operates on the tree shown
above.

/* treeprint: in-order print of tree p */
void treeprint(struct tnode *p)

if (p!'= NULL) {

treeprint(p->left);

printf("%ld 9%\n", p->count, p->word);

treeprint(p->right);

} }

A practical note: if the tree becomes ~"unbalanced" because the words don't arrive in random
order, the running time of the program can grow too much. As aworst casg, if the words are
already in order, this program does an expensive smulation of linear search. There are
generalizations of the binary tree that do not suffer from this worst-case behavior, but we will
not describe them here.

Before leaving this example, it is so worth a brief digression on a problem related to storage
alocators. Clearly it's desirable that there be only one storage allocator in a program, even
though it allocates different kinds of objects. But if one allocator is to process requests for,
say, pointers to char s and pointersto st ruct t nodes, two questions arise. First, how does it
meet the requirement of most real machines that objects of certain types must satisfy alignment
restrictions (for example, integers often must be located at even addresses)? Second, what
declarations can cope with the fact that an allocator must necessarily return different kinds of
pointers?

Alignment requirements can generally be satisfied easily, at the cost of some wasted space, by
ensuring that the allocator aways returns a pointer that meets all adignment restrictions. The
al | oc of Chapter 5 does not guarantee any particular alignment, so we will use the standard
library function mal | oc, which does. In Chapter 8 we will show one way to implement
mal | oc.

The question of the type declaration for a function like mal | oc is a vexing one for any
language that takes its type-checking serioudy. In C, the proper method is to declare that
mal | oc returns a pointer to voi d, then explicitly coerce the pointer into the desired type with a
cast. mall oc and related routines are declared in the standard header <stdlib. h>. Thus
tal | oc can bewritten as

#i ncl ude <stdlib. h>

/* talloc: make a tnode */
struct tnode *tall oc(void)

return (struct tnode *) malloc(sizeof (struct tnode));
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}
st r dup merely copies the string given by its argument into a safe place, obtained by acall on
mal | oc:

char *strdup(char *s) /* make a duplicate of s */

{

char *p;

p = (char *) malloc(strlen(s)+1); /* +1 for '\0" */
if (p !'= NULL)

strepy(p, s);
return p;

}
mal | oc returns NULL if no space is avallable; strdup passes that vaue on, leaving error-

handling to its caller.

Storage obtained by caling mal | oc may be freed for re-use by caling f r ee; see Chapters 8
and 7.

Exercise 6-2. Write a program that reads a C program and prints in aphabetica order each
group of variable names that are identical in the first 6 characters, but different somewhere
thereafter. Don't count words within strings and comments. Make 6 a parameter that can be set
from the command line.

Exercise 6-3. Write a cross-referencer that prints a list of al words in a document, and for
each word, a lig of the line numbers on which it occurs. Remove noise words like ““the,"
““and," and so on.

Exercise 6-4. Write a program that prints the distinct words in its input sorted into decreasing
order of frequency of occurrence. Precede each word by its count.

6.6 Table L ookup

In this section we will write the innards of a table-lookup package, to illustrate more aspects of
structures. This code is typical of what might be found in the symbol table management
routines of a macro processor or a compiler. For example, consider the #def i ne statement.
When alinelike

#define IN 1
is encountered, the name I N and the replacement text 1 are stored in a table. Later, when the
name | N appears in a statement like

state = I N

it must be replaced by 1.

There are two routines that manipulate the names and replacement texts. install (s, t)
records the name s and the replacement text t in atable; s and t are just character strings.
| ookup('s) searchesfor s in the table, and returns a pointer to the place where it was found, or
NULL if it wasn't there.

The algorithm is a hash-search - the incoming name is converted into a smal non-negative
integer, which is then used to index into an array of pointers. An array element points to the
beginning of a linked list of blocks describing names that have that hash value. It isNULL if no
names have hashed to that value.
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A block in the ligt is a structure containing pointers to the name, the replacement text, and the
next block in thelist. A null next-pointer marks the end of the list.

struct nlist { /[* table entry: */
struct nlist *next; /* next entry in chain */
char *narme; [* defined nane */
char *defn; [* replacenent text */

H

The pointer array isjust
#defi ne HASHSI ZE 101
static struct nlist *hashtab[HASHSI ZE]; /* pointer table */
The hashing function, which is used by both | ookup and i nst al | , adds each character valuein

the string to a scrambled combination of the previous ones and returns the remainder modulo
the array size. Thisis not the best possible hash function, but it is short and effective.

/* hash: formhash value for string s */
unsi gned hash(char *s)

{
unsi gned hashval ;
for (hashval = 0; *s I="\0"; s++)
hashval = *s + 31 * hashval;
return hashval % HASHSI ZE
}

Unsigned arithmetic ensures that the hash value is non-negative.

The hashing process produces a starting index in the array hasht ab; if the string is to be found
anywhere, it will be in the ligt of blocks beginning there. The search is performed by | ookup. If
| ookup finds the entry already present, it returns a pointer to it; if not, it returns NULL.

/* 1 ookup: look for s in hashtab */
struct nlist *lookup(char *s)
{

struct nlist *np

for (np = hashtab[hash(s)]; np != NULL;, np = np->next)
if (strcnp(s, np->nanme) == 0)
return np; [* found */
return NULL; /* not found */

}
Thefor loopin | ookup isthe standard idiom for walking along alinked list:

for (ptr = head; ptr !'= NULL; ptr = ptr->next)

instal | uses| ookup to determine whether the name being installed is already present; if so,
the new definition will supersede the old one. Otherwise, a new entry is created. i nstal |
returns NULL if for any reason there is no room for a new entry.
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struct nlist *lookup(char *);
char *strdup(char *);

/* install: put (name, defn) in hashtab */
struct nlist *install(char *name, char *defn)
{

struct nlist *np;
unsi gned hashval ;

if ((np = lookup(name)) == NULL) { /* not found */
np = (struct nlist *) malloc(sizeof (*np));
if (np == NULL || (np->name = strdup(nane)) == NULL)
return NULL;
hashval = hash(nane);
np- >next = hasht ab[ hashval];
hasht ab[ hashval ] = np;
} else /* already there */
free((void *) np->defn); [*free previous defn */
if ((np->defn = strdup(defn)) == NULL)
return NULL;
return np;

}
Exercise 6-5. Write a function undef that will remove a name and definition from the table

maintained by | ookup andi nstal | .

Exercise 6-6. Implement a smple version of the #define processor (i.e.,, no arguments)
suitable for use with C programs, based on the routines of this section. You may also find
get ch and unget ch helpful.

6.7 Typedef

C provides a facility called t ypedef for creating new data type names. For example, the
declaration

typedef int Length;
makes the name Lengt h a synonym for i nt. The type Lengt h can be used in declarations,
casts, etc., in exactly the same ways that thei nt type can be:

Length | en, maxlen;
Length *l engths[];

Similarly, the declaration

typedef char *String;
makes String a synonym for char * or character pointer, which may then be used in
declarations and casts:

String p, lineptr[ MAXLINES], alloc(int);

int strecnp(String, String);

p = (String) malloc(100);
Notice that the type being declared in at ypedef appears in the position of a variable name,
not right after the word t ypedef . Syntactically, t ypedef is like the storage classes ext ern,
stati c, etc. We have used capitalized names for t ypedef s, to make them stand out.

As a more complicated example, we could make t ypedef s for the tree nodes shown earlier in
this chapter:

typedef struct tnode *Treeptr;

typedef struct tnode { /* the tree node: */
char *word; [* points to the text */
int count; /* nunber of occurrences */
struct tnode *left; /* left child */
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struct tnode *right; /* right child */
} Treenode;

This creates two new type keywords called Tr eenode (a structure) and Tr eept r (a pointer to
the structure). Then the routinet al | oc could become

Treeptr talloc(void)

return (Treeptr) mall oc(sizeof (Treenode));

}
It must be emphasized that at ypedef declaration does not create a new type in any sense; it

merely adds a new name for some existing type. Nor are there any new semantics. variables
declared this way have exactly the same properties as variables whose declarations are spelled
out explicitly. In effect, t ypedef is like #define, except that since it is interpreted by the
compiler, it can cope with textual substitutions that are beyond the capabilities of the
preprocessor. For example,

typedef int (*PFl)(char *, char *);
creates the type PFI, for ““pointer to function (of two char * arguments) returning int,"
which can be used in contexts like

PFl strcnp, nuncnp;
in the sort program of Chapter 5.

Besides purely aesthetic issues, there are two main reasons for using t ypedef s. The first isto
parameterize a program against portability problems. If t ypedef s are used for data types that
may be machine-dependent, only the t ypedef s need change when the program is moved. One
common situation is to use typedef names for various integer quantities, then make an
appropriate set of choices of short, i nt, and | ong for each host machine. Types like si ze_t
and pt r di f f _t from the standard library are examples.

The second purpose of t ypedef s is to provide better documentation for a program - a type
cdled Treeptr may be easer to understand than one declared only as a pointer to a
complicated structure.

6.8 Unions

A union is avariable that may hold (at different times) objects of different types and sizes, with
the compiler keeping track of size and aignment requirements. Unions provide a way to
manipulate different kinds of data in a single area of storage, without embedding any machine-
dependent information in the program. They are analogous to variant records in pascal.

As an example such as might be found in a compiler symbol table manager, suppose that a
constant may be anint, afl oat, or a character pointer. The value of a particular constant
must be stored in a variable of the proper type, yet it is most convenient for table management
if the value occupies the same amount of storage and is stored in the same place regardless of
its type. This is the purpose of a union - a single variable that can legitimately hold any of one
of severa types. The syntax is based on structures:

union u_tag {
int ival;
float fval;
char *sval
Pou
The variable u will be large enough to hold the largest of the three types; the specific size is
implementation-dependent. Any of these types may be assigned to u and then used in
expressions, so long as the usage is consistent: the type retrieved must be the type most

recently stored. It is the programmer's responsibility to keep track of which type is currently
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stored in a union; the results are implementation-dependent if something is stored as one type
and extracted as another.

Syntactically, members of a union are accessed as
union-name. member

or
union-pointer- >member

just as for structures. If the variable ut ype is used to keep track of the current type stored in u,
then one might see code such as

if (utype == | NT)
printf("%\n", u.ival);
if (utype == FLQAT)
printf("%\n", u.fval);
if (utype == STRI NG
printf("%\n", u.sval);
el se
printf("bad type % in utype\n", utype);
Unions may occur within structures and arrays, and vice versa. The notation for accessing a
member of a union in a structure (or vice versa) is identical to that for nested structures. For

example, in the structure array defined by

struct {

char *nane;

int flags;

i nt utype;

uni on {
int ival;
float fval;
char *sval

P
} synt ab[ NSYM ;
the member i val isreferred to as

symtab[i].u.ival
and the first character of the string sval by either of

*symtab[i]. u.sval

synmtab[i].u.sval[0]
In effect, a union is a structure in which al members have offset zero from the base, the
structure is big enough to hold the ““widest" member, and the dignment is appropriate for al
of the types in the union. The same operations are permitted on unions as on structures:
assignment to or copying as a unit, taking the address, and accessing a member.

A union may only be initidlized with a value of the type of its first member; thus union u
described above can only be initialized with an integer value.

The storage alocator in Chapter 8 shows how a union can be used to force a variable to be
aligned on a particular kind of storage boundary.

6.9 Bit-fields

When storage space is a a premium, it may be necessary to pack several objects into a single
machine word; one common use is a set of single-bit flags in applications like compiler symbol
tables. Externally-imposed data formats, such as interfaces to hardware devices, aso often
require the ability to get at pieces of aword.
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Imagine a fragment of a compiler that manipulates a symbol table. Each identifier in a program
has certain information associated with it, for example, whether or not it is a keyword, whether
or not it is externa and/or static, and so on. The most compact way to encode such
information is a set of one-bit flagsin asinglechar orint.

The usual way this is done is to define a set of “"masks' corresponding to the relevant bit
positions, asin

#defi ne KEYWORD 01
#def i ne EXTRENAL 02
#define STATIC 04

or

enum { KEYWORD = 01, EXTERNAL = 02, STATIC = 04 };
The numbers must be powers of two. Then accessing the bits becomes a matter of " bit-
fiddling" with the shifting, masking, and complementing operators that were described in
Chapter 2.

Certain idioms appear frequently:

flags | = EXTERNAL | STATIC
turns on the EXTERNAL and STATI C bitsin f | ags, while

flags & ~(EXTERNAL | STATIO);
turns them off, and

if ((flags & (EXTERNAL | STATIC)) == 0) ...
istrueif both bits are off.

Although these idioms are readily mastered, as an alternative C offers the capability of defining
and accessing fields within a word directly rather than by bitwise logical operators. A bit-field,
or field for short, is a set of adjacent bits within a single implementation-defined storage unit
that we will cal a “word." For example, the symbol table #def i nes above could be replaced
by the definition of threefields:

struct {
unsigned int is_keyword : 1;
unsigned int is_extern : 1;
unsigned int is_static : 1;
} flags;

This defines a variable table called f | ags that contains three 1-bit fields. The number following
the colon represents the field width in bits. The fields are declared unsi gned int to ensure
that they are unsigned quantities.

Individual fields are referenced in the same way as other structure members:
flags.is_keyword, flags.is_extern, etc. Fieds behave like smal integers, and may
participate in arithmetic expressions just like other integers. Thus the previous examples may
be written more naturally as

flags.is_extern = flags.is_static = 1;
to turn the bits on;
flags.is_extern = flags.is_static = 0;

to turn them off; and
if (flags.is_extern == 0 & flags.is_static == 0)

to test them.
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Almost everything about fields is implementation-dependent. Whether a fiedld may overlap a
word boundary is implementation-defined. Fields need not be names; unnamed fields (a colon
and width only) are used for padding. The special width O may be used to force aignment at
the next word boundary.

Fields are assigned |eft to right on some machines and right to left on others. This means that
although fields are useful for maintaining internally-defined data structures, the question of
which end comes first has to be carefully considered when picking apart externally-defined
data; programs that depend on such things are not portable. Fields may be declared only as
i nt's; for portability, specify si gned or unsi gned explicitly. They are not arrays and they do
not have addresses, so the & operator cannot be applied on them.
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Chapter 7 - Input and Output

Input and output are not part of the C language itsdlf, so we have not emphasized them in our
presentation thus far. Nonetheless, programs interact with their environment in much more
complicated ways than those we have shown before. In this chapter we will describe the
standard library, a set of functions that provide input and output, string handling, storage
management, mathematical routines, and a variety of other services for C programs. We will
concentrate on input and output

The ANS standard defines these library functions precisely, so that they can exist in
compatible form on any system where C exists. Programs that confine their system interactions
to facilities provided by the standard library can be moved from one system to another without
change.

The properties of library functions are specified in more than a dozen headers; we have already
seen severa of these, including <st di o. h>, <stri ng. h>, and <ct ype. h>. We will not present
the entire library here, since we are more interested in writing C programs that use it. The
library is described in detail in Appendix B.

7.1 Standard Input and Output

As we said in Chapter 1, the library implements a smple model of text input and output. A text
stream consists of a sequence of lines, each line ends with a newline character. If the system
doesn't operate that way, the library does whatever necessary to make it appear as if it does.
For instance, the library might convert carriage return and linefeed to newline on input and
back again on outpui.

The smplest input mechanism is to read one character a a time from the standard input,
normally the keyboard, with get char :

i nt getchar(void)
get char returns the next input character each time it is called, or EOF when it encounters end
of file. The symbolic constant ECF is defined in <st di 0. h>. The vaue is typicaly -1, bus tests
should be written in terms of ECF s0 as to be independent of the specific value.

In many environments, a file may be substituted for the keyboard by using the < convention for
input redirection: if aprogram pr og Uses get char , then the command line

prog <infile
causes pr og to read characters fromi nf i | e instead. The switching of the input is done in such
a way that prog itsef is oblivious to the change; in particular, the string “<infile" is not
included in the command-line arguments in ar gv. Input switching is also invisble if the input
comes from another program via a pipe mechanism: on some systems, the command line

ot herprog | prog
runs the two programs ot her pr og and pr og, and pipes the standard output of ot her pr og into
the standard input for pr og.

The function

i nt putchar(int)
is used for output: put char (c) puts the character ¢ on the st andard out put, which is by
default the screen. put char returns the character written, or ECF is an error occurs. Again,
output can usually be directed to afile with >filename: if pr og uses put char ,
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prog >outfile
will write the standard output to out fi | e instead. If pipes are supported,

prog | anotherprog
puts the standard output of pr og into the standard input of anot her pr og.

Output produced by printf aso finds its way to the standard output. Cals to put char and
printf may beinterleaved - output happens in the order in which the calls are made.

Each source file that refers to an input/output library function must contain the line

#i ncl ude <stdio. h>
before the first reference. When the name is bracketed by < and > a search is made for the
header in a standard set of places (for example, on UNIX systems, typicaly in the directory
[ usr/i ncl ude).

Many programs read only one input stream and write only one output stream; for such
programs, input and output with get char, put char, and printf may be entirely adequate,
and is certainly enough to get started. This is particularly true if redirection is used to connect
the output of one program to the input of the next. For example, consider the program | ower ,
which convertsits input to lower case:

#i ncl ude <stdio. h>
#i ncl ude <ctype. h>

main() /* lower: convert input to | ower case*/
int c

while ((c = getchar()) != ECF)
put char (t ol ower(c));
return O;

}
The function t ol ower is defined in <ct ype. h>; it converts an upper case letter to lower case,

and returns other characters untouched. As we mentioned earlier, ~“functions' like get char
and put char in <stdio. h> and tol ower in <ctype. h> are often macros, thus avoiding the
overhead of a function cal per character. We will show how this is done in Section 8.5.
Regardless of how the <ct ype. h> functions are implemented on a given machine, programs
that use them are shielded from knowledge of the character set.

Exercise 7-1. Write a program that converts upper case to lower or lower case to upper,
depending on the name it is invoked with, as found in ar gv[ 0] .

7.2 Formatted Output - printf

The output function printf trandates internal values to characters. We have used pri nt f
informally in previous chapters. The description here covers most typical uses but is not
complete; for the full story, see Appendix B.

int printf(char *format, argl, arg2, ...);
printf converts, formats, and prints its arguments on the standard output under control of the
f or mat . It returns the number of characters printed.

The format string contains two types of objects. ordinary characters, which are copied to the
output stream, and conversion specifications, each of which causes conversion and printing of
the next successive argument to pri nt f . Each conversion specification begins with a % and
ends with a conversion character. Between the % and the conversion character there may be,
inorder:
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A minus sign, which specifies left adjustment of the converted argument.
A number that gspecifies the minimum fied width. The converted argument will be

printed in afield at least thiswide. If necessary it will be padded on the left (or right, if
left adjustment is called for) to make up the field width.

A period, which separates the field width from the precision.

A number, the precision, that specifies the maximum number of characters to be printed
from a string, or the number of digits after the decimal point of a floating-point value,
or the minimum number of digits for an integer.

An h if the integer isto be printed asashort, or | (letter el) if asal ong.

Conversion characters are shown in Table 7.1. If the character after the % is not a conversion
gpecification, the behavior is undefined.

Table 7.1 Basic Printf Conversions

Character | Argument type; Printed As |
d,i i nt ; decimal number |
o i nt ; unsigned octal number (without aleading zero) |

i nt ; unsigned hexadecimal number (without aleading 0x or 0X), using abcdef or
ABCDEF for 10, ...,15.

u i nt ; unsigned decimal number |
c i nt ; single character |
char *; print characters from the string until a' \ 0' or the number of characters
given by the precision.

x

¢ g;Jubl e; [ -] m.dddddd, where the number of d'sis given by the precision (default
e E doubl e; [ -] m.dddo_ld_de+/ - Xx or [ -] m.ddddddE+/ - xx, where the number of d's
is given by the precision (default 6).
doubl e; use % or % if the exponent is less than -4 or greater than or equal to the
9, G precision; otherwise use % . Trailing zeros and atrailing decimal point are not
printed.
p \voi d *; pointer (implementation-dependent representation). |
% no argument is converted; print a % |

A width or precision may be specified as *, in which case the value is computed by converting
the next argument (which must be ani nt ). For example, to print at most max characters from
astring s,

printf("%*s", max, s);
Most of the format conversions have been illustrated in earlier chapters. One exception is the
precison as it relates to strings. The following table shows the effect of a variety of
specifications in printing ~"hello, world" (12 characters). We have put colons around each field
SO you can see it extent.

1S :hell o, world:

1 9%40s: :hell o, worl d:

: % 10s: :hell o, wor:

: % 10s: :hell o, worl d:

: % 15s: :hell o, worl d:

: % 15s: hello, world :
1 9%45. 10s: : hel | o, wor:

1% 15. 10s: :hell o, wor
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A warning: printf uses its first argument to decide how many arguments follow and what
their type is. It will get confused, and you will get wrong answers, if there are not enough
arguments of if they are the wrong type. You should aso be aware of the difference between
these two calls:

printf(s); [* FAILS if s contains % */

printf("%", s); [* SAFE */
The function sprintf does the same conversions as pri nt f does, but stores the output in a
string:

int sprintf(char *string, char *format, argl, arg2, ...);
sprintf formats the argumentsin ar g1, ar g2, etc., according to f or mat as before, but places
the result instri ng instead of the standard output; st ri ng must be big enough to receive the
result.

Exercise 7-2. Write a program that will print arbitrary input in a sensible way. As a minimum,
it should print non-graphic characters in octal or hexadecimal according to local custom, and
break long text lines.

7.3 Variable-length Argument Lists

This section contains an implementation of a minimal version of pri nt f , to show how to write
afunction that processes a variable-length argument list in a portable way. Since we are mainly
interested in the argument processing, ni npri nt f will process the format string and arguments
but will call thered printf to do the format conversions.

The proper declaration for printf is

int printf(char *fnt, ...)
where the declaration . .. means that the number and types of these arguments may vary. The
declaration . . . can only appear at the end of an argument list. Our ni npri nt f isdeclared as

void mnprintf(char *fnt, ...)
since we will not return the character count that pri nt f does.

The tricky bit is how ni npri nt f walks along the argument list when the list doesn't even have
a name. The standard header <st dar g. h> contains a set of macro definitions that define how
to step through an argument list. The implementation of this header will vary from machine to
machine, but the interface it presentsis uniform.

The type va_l i st is used to declare a variable that will refer to each argument in turn; in
m nprintf, thisvariable is caled ap, for ~“argument pointer." The macro va_start initidizes
ap to point to the first unnamed argument. It must be called once before ap is used. There
must be at least one named argument; the find named argument is used by va_start to get
started.

Each cdl of va_ar g returns one argument and steps ap to the next; va_ar g uses a type name
to determine what type to return and how big a step to take. Findly, va_end does whatever
cleanup is necessary. It must be called before the program returns.

These properties form the basis of our smplified print f :

#i ncl ude <stdarg. h>

[* minprintf: mnimal printf with variable argunment |ist */
void mnprintf(char *fnt, ...)
{
va_list ap; /* points to each unnanmed arg in turn */
char *p, *sval;
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int ival;
doubl e dval

va_start(ap, fnt); /* make ap point to 1st unnaned arg */
for (p = fnt; *p; p++) {
if ("p!="%) {
put char (*p);
conti nue;

}
switch (*++p) {

case 'd':
ival = va_arg(ap, int);
printf("o%d", ival);
br eak;
case 'f':
dval = va_arg(ap, double);
printf("9%", dval);
br eak;
case 's':
for (sval = va_arg(ap, char *); *sval; sval ++)
put char (*sval ) ;
br eak;
defaul t:
put char (*p);
br eak;
}

va_end(ap); /* clean up when done */

}
Exercise 7-3. Revise mi npri nt f to handle more of the other facilitiesof printf.

7.4 Formatted I nput - Scanf

The function scanf is the input analog of printf, providing many of the same conversion
facilities in the opposite direction.

int scanf(char *format, ...)
scanf reads characters from the standard input, interprets them according to the specification
in format , and stores the results through the remaining arguments. The format argument is
described below; the other arguments, each of which must be a pointer, indicate where the
corresponding converted input should be stored. As with pri nt f, this section is a summary of
the most useful features, not an exhaustive list.

scanf stops when it exhausts its format string, or when some input fails to match the control
specification. It returns as its vaue the number of successfully matched and assigned input
items. This can be used to decide how many items were found. On the end of file, ECF is
returned; note that this is different from 0, which means that the next input character does not
match the first specification in the format string. The next call to scanf resumes searching
immediately after the last character already converted.

Thereisalso afunction sscanf that reads from a string instead of the standard input:

int sscanf(char *string, char *format, argl, arg2, ...)
It scans the st ri ng according to the format in f or rat and stores the resulting values through
argl, ar g2, etc. These arguments must be pointers.

The format string usually contains conversion specifications, which are used to control
conversion of input. The format string may contain:

Blanks or tabs, which are not ignored.
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Ordinary characters (not %), which are expected to match the next non-white space
character of the input stream.

Conversion specifications, consisting of the character % an optional assgnment
suppression character *, an optional number specifying a maximum fied width, an
optional h, | or L indicating the width of the target, and a conversion character.

A conversion specification directs the conversion of the next input field. Normally the result is
places in the variable pointed to by the corresponding argument. If assgnment suppression is
indicated by the * character, however, the input field is skipped; no assgnment is made. An
input field is defined as a string of non-white space characters; it extends either to the next
white space character or until the fidld width, is specified, is exhausted. Thisimpliesthat scanf
will read across boundaries to find its input, sSnce newlines are white space. (White space
characters are blank, tab, newline, carriage return, vertical tab, and formfeed.)

The conversion character indicates the interpretation of the input field. The corresponding
argument must be a pointer, as required by the call-by-vaue semantics of C. Conversion
characters are shown in Table 7.2.

Table 7.2: Basic Scanf Conversions

Character | Input Data; Argument type |
d |decimal integer; int * |
i integer; i nt *. Theinteger may bein octal (leading 0) or hexadecimal (leading
0x Or 0X).
o ‘octal integer (with or without leading zero); i nt * |
u 'unsigned decimal integer; unsi gned int * |
X  hexadecimal integer (with or without leading ox or 0X); i nt * |
characters; char *. The next input characters (default 1) are placed at the
c indicated spot. The normal skip-over white space is suppressed; to read the next

non-white space character, use %4s

character string (not quoted); char *, pointing to an array of characterslong
enough for the string and aterminating ' \ 0' that will be added.

floating-point number with optional sign, optional decimal point and optional
exponent; f | oat *

% literal %; no assignment is made. |

e, f,g

The conversion characters d, i, o, u, and x may be preceded by h to indicate that a pointer to
short rather thani nt appears inthe argument list, or by | (letter dl) to indicate that a pointer
to | ong appears in the argument list.

As afirst example, the rudimentary calculator of Chapter 4 can be written with scanf to do
the input conversion:

#i ncl ude <stdi o. h>
main() /* rudinentary cal culator */
doubl e sum v;

sum = 0;
while (scanf("%f", &) == 1)
printf("\t% 2f\n", sum += v);
return O;
}
Suppose we want to read input lines that contain dates of the form
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25 Dec 1988
The scanf statementis

i nt day, year;
char nont hnare[ 20] ;

scanf ("%l % %", &day, nonthnanme, &year);
No & is used with nont hnane, Since an array name is a pointer.

Literal characters can appear in the scanf format string; they must match the same characters
in the input. So we could read dates of the form m1 dd/ yy with the scanf statement:

i nt day, nmonth, year;

scanf ("%l/ %/ %", &nonth, &day, &year);
scanf ignores blanks and tabs in its format string. Furthermore, it skips over white space
(blanks, tabs, newlines, etc.) as it looks for input values. To read input whose format is not
fixed, it is often best to read a line a a time, then pick it apart with scanf. For example,
suppose we want to read lines that might contain a date in either of the forms above. Then we
could write

while (getline(line, sizeof(line)) > 0) {
if (sscanf(line, "% % %", &day, nonthnanme, &year) == 3)

printf("valid: %\n", line); /* 25 Dec 1988 form */
else if (sscanf(line, "%/ %/ %", &month, &day, &year) == 3)
printf("valid: %\n", line); /* nmmdd/yy form*/
el se
printf("invalid: %\n", line); /* invalid form?*/

}
Cdls to scanf can be mixed with calls to other input functions. The next cal to any input

function will begin by reading the first character not read by scanf .

A fina warning: the arguments to scanf and sscanf must be pointers. By far the most
common error iswriting

scanf ("%", n);

instead of

scanf ("%", &n);
This error is not generally detected at compile time.

Exercise 7-4. Write a private version of scanf anaogous to ni nprintf from the previous
section.

Exercise 5-5. Rewrite the postfix calculator of Chapter 4 to use scanf and/or sscanf to do
the input and number conversion.

7.5 File Access

The examples so far have all read the standard input and written the standard output, which are
automatically defined for a program by the local operating system.

The next step is to write a program that accesses a file that is not already connected to the
program. One program that illustrates the need for such operations is cat , which concatenates
a set of named files into the standard output. cat isused for printing files on the screen, and as
a general-purpose input collector for programs that do not have the capability of accessing files
by name. For example, the command

cat x.c y.c
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prints the contents of thefilesx. ¢ and y. ¢ (and nothing else) on the standard outpui.

The question is how to arrange for the named files to be read - that is, how to connect the
external names that a user thinks of to the statements that read the data.

The rules are smple. Before it can be read or written, a file has to be opened by the library
function f open. f open takes an external name like x. ¢ or y. ¢, does some housekeeping and
negotiation with the operating system (details of which needn't concern us), and returns a
pointer to be used in subsequent reads or writes of the file.

This pointer, caled the file pointer, points to a structure that contains information about the
file, such as the location of a buffer, the current character position in the buffer, whether the
file is being read or written, and whether errors or end of file have occurred. Users don't need
to know the details, because the definitions obtained from <st di 0. h> include a structure
declaration called FI LE. The only declaration needed for afile pointer is exemplified by

FI LE *fp;
FI LE *fopen(char *nane, char *node);

This says that f p is a pointer to a FI LE, and f open returns a pointer to a FI LE. Notice that
FI LE isatype name, likei nt, not astructure tag; it is defined with at ypedef . (Details of how
f open can be implemented on the UNIX system are given in Section 8.5.)

Thecall to f open inaprogramis

fp = fopen(nanme, node);
The first argument of f open is a character string containing the name of the file. The second
argument is the mode, also a character string, which indicates how one intends to use the file.
Allowable modes include read ("r "), write ("w"), and append (" a" ). Some systems distinguish
between text and binary files; for the latter, a" b" must be appended to the mode string.

If afile that does not exist is opened for writing or appending, it is created if possible. Opening
an existing file for writing causes the old contents to be discarded, while opening for appending
preserves them. Trying to read a file that does not exist is an error, and there may be other
causes of error as well, like trying to read afile when you don't have permission. If there is any
error, f open will return NULL. (The error can be identified more precisely; see the discussion of
error-handling functions at the end of Section 1 in Appendix B.)

The next thing needed is away to read or write the file once it is open. get ¢ returns the next
character from afile; it needs the file pointer to tell it which file.

int getc(FlILE *fp)
get ¢ returns the next character from the stream referred to by f p; it returns ECF for end of file
or error.

put ¢ isan output function:

int putc(int c, FILE *fp)
put ¢ writes the character ¢ to the file f p and returns the character written, or EOF if an error
occurs. Like get char and put char , get ¢ and put ¢ may be macros instead of functions.

When a C program is started, the operating system environment is responsible for opening
three files and providing pointers for them. These files are the standard input, the standard
output, and the standard error; the corresponding file pointers are caled st di n, st dout , and
stderr, and are declared in <st di 0. h>. Normally st di n is connected to the keyboard and
stdout and stderr are connected to the screen, but st di n and st dout may be redirected to
files or pipes as described in Section 7.1.
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get char and put char can be defined interms of get ¢, put ¢, st di n, and st dout asfollows:

#def i ne getchar () getc(stdin)
#def i ne putchar(c) putc((c), stdout)

For formatted input or output of files, the functions f scanf and f pri ntf may be used. These
are identical to scanf and pri nt f, except that the first argument is a file pointer that specifies
the file to be read or written; the format string is the second argument.

int fscanf(FILE *fp, char *format, ...)
int fprintf(FILE *fp, char *format, ...)

With these preliminaries out of the way, we are now in a position to write the program cat to
concatenate files. The design is one that has been found convenient for many programs. If
there are command-line arguments, they are interpreted as filenames, and processed in order. If
there are no arguments, the standard input is processed.

#i ncl ude <stdio. h>

/* cat: concatenate files, version 1 */
mai n(i nt argc, char *argv[])

{
FI LE *fp;
voi d filecopy(FILE *, FILE *)

if (argc == 1) /* no args; copy standard input */
filecopy(stdin, stdout);
el se
whil e(--argc > 0)
if ((fp = fopen(*++argv, "r")) == NULL) {
printf("cat: can't open %\n, *argv);
return 1;
} else {
filecopy(fp, stdout);
fclose(fp);

return O;

}

[* filecopy: copy fileifp to file ofp */
void filecopy(FILE *ifp, FILE *of p)
{

int c;
while ((c = getc(ifp)) !'= ECF)
putc(c, ofp);

The file pointers st di n and st dout are objects of type FI LE *. They are constants, however,
not variables, so it is not possible to assign to them.

The function

int fclose(FlILE *fp)

is the inverse of f open, it breaks the connection between the file pointer and the external name
that was established by f open, freeing the file pointer for another file. Since most operating
systems have some limit on the number of files that a program may have open simultaneoudly,
it's a good idea to free the file pointers when they are no longer needed, as we did in cat .
There is also another reason for f cl ose on an output file - it flushes the buffer in which put ¢
is collecting output. fcl ose is called automaticaly for each open file when a program
terminates normally. (You can close st di n and st dout if they are not needed. They can aso
be reassigned by the library function f r eopen.)

7.6 Error Handling - Stderr and Exit
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The treatment of errors in cat is not ideal. The trouble is that if one of the files can't be
accessed for some reason, the diagnostic is printed at the end of the concatenated output. That
might be acceptable if the output is going to a screen, but not if it's going into a file or into
another program via a pipdline.

To handle this situation better, a second output stream, called stderr, is assigned to a
program in the same way that stdin and stdout are. Output written on stderr normaly
appears on the screen even if the standard output is redirected.

Let usrevise cat to write its error messages on the standard error.

#i ncl ude <stdio. h>

/* cat: ~concatenate files, version 2 */
mai n(i nt argc, char *argv[])

{
FI LE *fp;
void filecopy(FILE *, FILE *);
char *prog = argv[O0]; [/* programnane for errors */
if (argc == 1) /* no args; copy standard input */
filecopy(stdin, stdout);
el se
while (--argc > 0)
if ((fp = fopen(*++argv, "r")) == NULL) {
fprintf(stderr, "%: can't open %\n"
prog, *argv);
exit(1);
} else {
filecopy(fp, stdout);
fcl ose(fp);
}
if (ferror(stdout)) {
fprintf(stderr, "%: error witing stdout\n", prog);
exit(2);
exit(0);
}

The program signas errors in two ways. First, the diagnostic output produced by f pri nt f

goesto stderr, so it findsits way to the screen instead of disappearing down a pipeline or into
an output file. We included the program name, from argv[ 0], in the message, so if this
program is used with others, the source of an error isidentified.

Second, the program uses the standard library function exit, which terminates program
execution when it is called. The argument of exi t is avallable to whatever process called this
one, so the success or fallure of the program can be tested by another program that uses this
one as a sub-process. Conventionaly, a return vaue of O signas that dl is well; non-zero
values usualy signal abnormal situations. exi t calsfcl ose for each open output file, to flush
out any buffered outpuit.

Within mai n, return expr is equivalent to exit (expr). exi t has the advantage that it can be
caled from other functions, and that cdls to it can be found with a pattern-searching program
like thosein Chapter 5.

Thefunction f err or returns non-zero if an error occurred on the stream f p.

int ferror(FILE *fp)
Although output errors are rare, they do occur (for example, if a disk fills up), so a production
program should check this as well.
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The function f eof (FI LE *) is analogous to ferror; it returns non-zero if end of file has
occurred on the specified file.

int feof (FILE *fp)
We have generaly not worried about exit status in our smdl illustrative programs, but any
serious program should take care to return sensible, useful status values.

7.7 Line Input and Output

The standard library provides an input and output routine f get s that is Smilar to the get | i ne
function that we have used in earlier chapters:

char *fgets(char *line, int maxline, FILE *fp)
f get s reads the next input line (including the newline) from file f p into the character array
li ne; a most max! i ne- 1 characters will be read. The resulting line is terminated with '\ 0' .
Normally f get s returns| i ne; on end of file or error it returns NULL. (Our get | i ne returns the
line length, which is amore useful value; zero means end of file.)

For output, the function f put s writes a string (which need not contain a newline) to afile:

int fputs(char *line, FILE *fp)
It returns EOF if an error occurs, and non-negative otherwise.

The library functions gets and put s are Smilar to fgets and f put s, but operate on st di n
and st dout . Confusingly, get s deletesthe terminating ' \ n' , and put s addsit.

To show that there is nothing special about functions like f get s and f put's, here they are,
copied from the standard library on our system:

/* fgets: get at nost n chars fromiop */
char *fgets(char *s, int n, FILE *iop)

register int c;
regi ster char *cs;

CS = s;
while (--n >0 & (c = getc(iop)) != ECF)
if ((*cs++ =c¢) =="\n")
br eak;
*cs = '\0';

return (c == ECF & cs == s) ? NULL : s;
}

/* fputs: put string s on file iop */
int fputs(char *s, FILE *iop)

int c;

while (c = *s++)
putc(c, iop);
return ferror(iop) ? ECF : O;

}
For no obvious reason, the standard specifies different return valuesfor f error and f put s.

It is easy to implement our get | i ne from f get s:
/* getline: read a line, return length */
int getline(char *line, int nmax)
if (fgets(line, max, stdin) == NULL)

return O;
el se
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return strlen(line);

}
Exercise 7-6. Write a program to compare two files, printing the first line where they differ.

Exercise 7-7. Modify the pattern finding program of Chapter 5 to take its input from a set of
named files or, if no files are named as arguments, from the standard input. Should the file
name be printed when a matching line is found?

Exercise 7-8. Write a program to print a set of files, starting each new one on a new page,
with atitle and a running page count for each file.

7.8 Miscdlaneous Functions

The standard library provides awide variety of functions. This section is a brief synopsis of the
most useful. More details and many other functions can be found in Appendix B.

7.8.1 String Operations

We have already mentioned the string functions str 1 en, strcpy, strcat, and st rcnp, found
in<string. h>. Inthefollowing, s andt arechar *'s,and c andn areints.
strcat(s,t) concatenatet to end of s
strncat (s, t, n) concatenaten charactersof t toend of s
strenp(s,t) return negative, zero, or positivefors < t,s ==t,s >t
strncnp(s,t,n) sameasstrcnp but only infirst n characters
strcpy(s,t) copyt tos
strncpy(s,t,n) copy at mostn charactersof t tos
strlen(s) return length of s
strchr(s,c) return pointer to first c in's, or NULL if not present
strrchr(s,c)  return pointer tolast c in's, or NULL if not present

7.8.2 Character Class Testing and Conversion

Several functions from <ct ype. h> perform character tests and conversions. In the following, ¢
isanint that can be represented as an unsi gned char or EOF. The function returnsi nt .

i sal pha(c) non-zeroif ¢ isaphabetic, O if not

i supper (¢) non-zeroif ¢ isupper case, O if not

i sl ower (¢) non-zeroif c islower case, 0if not

i sdigit(c) non-zeroif c isdigit, Oif not

i sal nun(c) non-zeroif i sal pha(c) orisdigit(c),Oif not

i sspace(c) non-zeroif ¢ isblank, tab, newline, return, formfeed, vertical tab

t oupper (¢) return ¢ converted to upper case

t ol ower (c) return c converted to lower case

7.8.3 Ungetc

The standard library provides arather restricted version of the function unget ch that we wrote
in Chapter 4; itiscadled unget c.

int ungetc(int c, FILE *fp)
pushes the character ¢ back onto file f p, and returns either ¢, or EOF for an error. Only one
character of pushback is guaranteed per file. ungetc may be used with any of the input
functionslike scanf , get ¢, or get char .

7.8.4 Command Execution

The function syst en{char *s) executes the command contained in the character string s,
then resumes execution of the current program. The contents of s depend strongly on the local
operating system. Asatrivia example, on UNIX systems, the statement

system("date");
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causes the program dat e to be run; it prints the date and time of day on the standard output.
syst emreturns a system-dependent integer status from the command executed. In the UNIX
system, the status return is the value returned by exi t .

7.8.5 Stor age M anagement
The functions mal | oc and cal | oc obtain blocks of memory dynamically.

void *mall oc(size_t n)
returns a pointer to n bytes of uninitialized storage, or NULL if the request cannot be satisfied.

void *calloc(size t n, size_ t size)
returns a pointer to enough free space for an array of n objects of the specified size, or NULL if
the request cannot be satisfied. The storage isinitialized to zero.

The pointer returned by nal | oc or cal | oc has the proper adignment for the object in question,
but it must be cast into the appropriate type, asin

int *ip;

ip=(int *) calloc(n, sizeof(int));
free(p) freesthe space pointed to by p, where p was originaly obtained by a cal to nal | oc
or cal | oc. There are no restrictions on the order in which space is freed, but it is a ghastly
error to free something not obtained by calling mal | oc or cal | oc.

It isalso an error to use something after it has been freed. A typical but incorrect piece of code
isthisloop that freesitems from alist:

for (p = head; p !'= NULL; p = p->next) /* WRONG */
free(p);
The right way is to save whatever is needed before freeing:

for (p = head; p !'= NULL; p = q) {
q = p->next;
free(p);

Section 8.7 shows the implementation of a storage allocator like mal | oc, in which allocated
blocks may be freed in any order.
7.8.6 Mathematical Functions

There are more than twenty mathematical functions declared in <nat h. h>; here are some of
the more frequently used. Each takes one or two doubl e arguments and returns adoubl e.

si n(x) sineof x, X inradians

cos(x) cosineof x, x in radians

atan2(y, x) arctangent of y/x, in radians

exp(x) exponential function €

| og(x) natural (base €) logarithm of x (x>0)

| 0g10(x)  common (base 10) logarithm of x (x>0)
pow(x,y) X

sqrt(x) square root of x (x>0)
f abs(x) absolute value of x

7.8.7 Random Number generation

Thefunction r and() computes a sequence of pseudo-random integers in the range zero to
RAND_MAX, which is defined in <st dl i b. h>. One way to produce random floating-point
numbers greater than or equal to zero but less than oneis

#define frand() ((double) rand() / (RAND MAX+1.0))
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(If your library aready provides a function for floating-point random numbers, it islikely to
have better statistical properties than this one.)

The function srand( unsi gned) sets the seed for r and. The portable implementation of r and
and sr and suggested by the standard appearsin Section 2.7.

Exercise 7-9. Functions like i supper can be implemented to save space or to save time.
Explore both possibilities.
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Chapter 8 - The UNIX System Interface

The UNIX operating system provides its services through a set of system calls, which are in
effect functions within the operating system that may be called by user programs. This chapter
describes how to use some of the most important system cdls from C programs. If you use
UNIX, this should be directly helpful, for it is sometimes necessary to employ system cdls for
maximum efficiency, or to access some facility that is not in the library. Even if you use C ona
different operating system, however, you should be able to glean insght into C programming
from studying these examples; although details vary, smilar code will be found on any system.
Since the ANS! C library is in many cases modeled on UNIX facilities, this code may help your
understanding of the library aswell.

This chapter is divided into three major parts: input/output, file system, and storage allocation.
The first two parts assume a modest familiarity with the external characteristics of UNIX
systems.

Chapter 7 was concerned with an input/output interface that is uniform across operating
systems. On any particular system the routines of the standard library have to be written in
terms of the facilities provided by the host system. In the next few sections we will describe the
UNIX system cdls for input and output, and show how parts of the standard library can be
implemented with them.

8.1 File Descriptors

In the UNIX operating system, al input and output is done by reading or writing files, because
al peripheral devices, even keyboard and screen, are files in the file system. This means that a
sngle homogeneous interface handles dl communication between a program and periphera
devices.

In the most genera case, before you read and write a file, you must inform the system of your
intent to do so, a process called opening the file. If you are going to write on afile it may aso
be necessary to create it or to discard its previous contents. The system checks your right to do
30 (Does the file exist? Do you have permission to access it?) and if dl is wel, returns to the
program a small non-negative integer caled a file descriptor. Whenever input or output is to
be done on the file, the file descriptor is used instead of the name to identify the file. (A file
descriptor is analogous to the file pointer used by the standard library, or to the file handle of
MS-DOS.) All information about an open file is maintained by the system; the user program
refers to the file only by the file descriptor.

Since input and output involving keyboard and screen is so common, special arrangements
exig to make this convenient. When the command interpreter (the ““shel") runs a program,
three files are open, with file descriptors O, 1, and 2, called the standard input, the standard
output, and the standard error. If a program reads 0 and writes 1 and 2, it can do input and
output without worrying about opening files.

The user of aprogram can redirect 1/0 to and from files with < and >:

prog <infile >outfile
In this case, the shell changes the default assignments for the file descriptors 0 and 1 to the
named files. Normally file descriptor 2 remains attached to the screen, so error messages can
go there. Similar observations hold for input or output associated with a pipe. In dl cases, the
file assgnments are changed by the shell, not by the program. The program does not know
where its input comes from nor where its output goes, so long as it uses file O for input and 1
and 2 for output.
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8.2Low Levd I/0 - Read and Write

Input and output uses the read and wri t e system calls, which are accessed from C programs
through two functions called read and wri t e. For both, the first argument is a file descriptor.
The second argument is a character array in your program where the data is to go to or to
come from. The third argument is the number is the number of bytesto be transferred.

int nread = read(int fd, char *buf, int n);
int nwitten = wite(int fd, char *buf, int n);

Each cdl returns a count of the number of bytes transferred. On reading, the number of bytes
returned may be less than the number requested. A return value of zero bytes implies end of
file, and - 1 indicates an error of some sort. For writing, the return value is the number of bytes
written; an error has occurred if thisisn't equal to the number requested.

Any number of bytes can be read or written in one call. The most common values are 1, which
means one character a a time (" unbuffered”), and a number like 1024 or 4096 that
corresponds to a physical block size on a peripheral device. Larger sizes will be more efficient
because fewer system calls will be made.

Putting these facts together, we can write a Smple program to copy its input to its output, the
equivalent of the file copying program written for Chapter 1. This program will copy anything
to anything, since the input and output can be redirected to any file or device.

#i ncl ude "syscalls. h"
main() /* copy input to output */

char buf[ BUFSI Z] ;
int n;

while ((n = read(0, buf, BUFSIZ)) > 0)
wite(l, buf, n);
return O;

}
We have collected function prototypes for the system cdlsinto afile called syscal I s. h SO we

can include it in the programs of this chapter. This name is not standard, however.

The parameter BUFSI Z is also defined in syscal | s. h; its value is a good size for the loca
system. If the file Size is not a multiple of BUFSI z, some r ead will return a smaler number of
bytes to be written by wri t e; the next call to r ead after that will return zero.

It isinstructive to see how read and wri t e can be used to construct higher-level routines like
get char, put char, etc. For example, here is a version of get char that does unbuffered input,
by reading the standard input one character at atime.

#i ncl ude "syscal |l s. h"

/* getchar: unbuffered single character input */
i nt getchar(void)

char c;

return (read(0, &c, 1) == 1) ? (unsigned char) c : EOF
}
c must be achar, because r ead needs a character pointer. Casting ¢ to unsi gned char inthe

return statement eliminates any problem of sign extension.

The second version of get char does input in big chunks, and hands out the characters one at a
time.
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#i ncl ude "syscal |l s. h"

/* getchar: sinmple buffered version */
i nt getchar(void)

static char buf[BUFSI Z];
static char *bufp = buf;
static int n = 0;

if (n==0) { /* buffer is enpty */
n = read(0, buf, sizeof buf);
buf p = buf;

}
return (--n >= 0) ? (unsigned char) *bufp++ : ECF
}
If these versions of get char were to be compiled with <st di o. h> included, it would be

necessary to #undef the name get char in caseit isimplemented as a macro.

8.3 Open, Creat, Close, Unlink

Other than the default standard input, output and error, you must explicitly open files in order
to read or write them. There are two system calls for this, open and cr eat [Sic].

open is rather like the f open discussed in Chapter 7, except that instead of returning a file
pointer, it returns afile descriptor, which isjust ani nt . open returns - 1 if any error occurs.

#i ncl ude <fcntl. h>

int fd;
i nt open(char *name, int flags, int perns);

fd = open(name, flags, perms);
As with f open, the nane argument is a character string containing the filename. The second
argument, f | ags, isani nt that specifies how the file isto be opened; the main values are
O_RDONLY open for reading only
O_VRONLY open for writing only
O_RDWR  open for both reading and writing

These constants are defined in <f cnt | . h> on System V UNIX systems, and in <sys/fil e. h>
on Berkeley (BSD) versions.

To open an existing file for reading,

fd = open(name, O RDONLY, 0);
The per ns argument is always zero for the uses of open that we will discuss.

It is an error to try to open a file that does not exist. The system call creat is provided to
create new files, or to re-write old ones.

int creat(char *nane, int perns);

fd = creat (nane, perns);
returns a file descriptor if it was able to create the file, and - 1 if not. If the file already exists,
creat will truncate it to zero length, thereby discarding its previous contents; it is not an error
tocreat afilethat aready exists.

If the file does not already exist, creat creates it with the permissions specified by the per ns
argument. In the UNIX file system, there are nine bits of permission information associated
with afile that control read, write and execute access for the owner of the file, for the owner's
group, and for al others. Thus a three-digit octal number is convenient for specifying the
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permissions. For example, 0775 specifies read, write and execute permission for the owner,
and read and execute permission for the group and everyone else.

To illustrate, here is a smplified version of the UNIX program cp, which copies one file to
another. Our version copies only one file, it does not permit the second argument to be a
directory, and it invents permissions instead of copying them.

#i ncl ude <stdi o. h>

#i ncl ude <fcntl. h>

#i ncl ude "syscalls. h"

#def i ne PERVS 0666 /* RWfor owner, group, others */

void error(char *, ...);

[* cp: copy flto f2 */
mai n(i nt argc, char *argv[])

{
int f1, f2, n;
char buf [ BUFSI Z] ;
if (argc !'= 3)
error("Usage: cp fromto");
if ((f1 = open(argv[1l], ORDO\NLY, 0)) == -1)
error("cp: can't open %", argv[1l]);
if ((f2 = creat(argv[2], PERWB)) == -1)
error("cp: can't create %, node %930",
argv[ 2], PERMS);
while ((n = read(f1l, buf, BUFSIZ)) > 0)
if (wite(f2, buf, n) I'=n)
error("cp: wite error on file %", argv[2]);
return O;
}

This program creates the output file with fixed permissions of 0666. With the st at system call,
described in Section 8.6, we can determine the mode of an existing file and thus give the same
mode to the copy.

Notice that the function error is caled with variable argument lists much like printf. The
implementation of error illustrates how to use another member of the printf family. The
standard library function vprintf is like printf except that the variable argument lig is
replaced by a single argument that has been initidized by cdling the va_start macro.
Similarly, vfprintf and vsprintf match fprintf and sprintf.

#i ncl ude <stdio. h>
#i ncl ude <stdarg. h>

/* error: print an error nessage and die */
void error(char *fnt, ...)

{

va_list args;

va_start(args, fnt);

fprintf(stderr, "error: ");

vprintf(stderr, fnt, args);

fprintf(stderr, "\n");

va_end(args);

exit(1);

}

There is a limit (often about 20) on the number of files that a program may open
simultaneously. Accordingly, any program that intends to process many files must be prepared
to re-use file descriptors. The function cl ose(int fd) breaks the connection between afile

descriptor and an open file, and frees the file descriptor for use with some other file; it



142

corresponds to fclose in the standard library except that there is no buffer to flush.
Termination of aprogram viaexi t or return from the main program closes al open files.

The function unl i nk(char *name) removes the file nane from the file system. It corresponds
to the standard library function r enove.

Exercise 8-1. Rewrite the program cat from Chapter 7 using read, wri t e, open, and cl ose
instead of their standard library equivalents. Perform experiments to determine the relative
speeds of the two versions.

8.4 Random Access - L seek

Input and output are normally sequential: each read or wri t e takes place a a position in the
file right after the previous one. When necessary, however, a file can be read or written in any
arbitrary order. The system cal | seek provides a way to move around in afile without reading
or writing any data

long | seek(int fd, long offset, int origin);
sets the current position in the file whose descriptor isf d to of f set , which is taken relative to
the location specified by ori gi n. Subsequent reading or writing will begin at that position.
origincanbeO, 1, or 2 to specify that of f set isto be measured from the beginning, from the
current position, or from the end of the file respectively. For example, to append to afile (the
redirection >> in the UNIX shell, or "a" for f open), seek to the end before writing:

| seek(fd, OL, 2);
To get back to the beginning (" rewind"),

| seek(fd, OL, 0);
Notice the oL argument; it could also be written as (1 ong) 0 or just as 0 if | seek is properly
declared.

With | seek, it is possible to treat files more or less like arrays, at the price of sower access.
For example, the following function reads any number of bytes from any arbitrary place in a
file. It returns the number read, or - 1 on error.

#i ncl ude "syscal |l s. h"

/*get: read n bytes from position pos */
int get(int fd, long pos, char *buf, int n)

if (lseek(fd, pos, 0) >=0) /* get to pos */
return read(fd, buf, n);

el se
return -1;

}
The return value from | seek isalong that gives the new position in the file, or - 1 if an error

occurs. The standard library function f seek is Smilar to | seek except that the first argument
isaFI LE * and the return is non-zero if an error occurred.

8.5 Example - An implementation of Fopen and Getc

Let us illustrate how some of these pieces fit together by showing an implementation of the
standard library routines f open and get c.

Recall that filesin the standard library are described by file pointers rather than file descriptors.
A file pointer is a pointer to a structure that contains several pieces of information about the
file a pointer to a buffer, so the file can be read in large chunks; a count of the number of
characters left in the buffer; a pointer to the next character position in the buffer; the file
descriptor; and flags describing read/write mode, error status, etc.
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The data structure that describes afile is contained in <st di 0. h>, which must be included (by
#i ncl ude) in any source file that uses routines from the standard input/output library. It is dso
included by functions in that library. In the following excerpt from atypical <st di 0. h>, names
that are intended for use only by functions of the library begin with an underscore so they are
less likely to collide with names in a user's program. This convention is used by al standard
library routines.

#defi ne NULL 0

#defi ne EOF (-1)

#def i ne BUFSI Z 1024

#define OPEN_MAX 20 /* max #files open at once */

typedef struct _iobuf {
int cnt; [* characters left */
char *ptr; /* next character position */
char *base; /* location of buffer */
int flag; /* nmode of file access */
int fd; [* file descriptor */
} FILE;
extern FILE _i ob[ OPEN_MAX] ;

#defi ne stdin (& i0ob[0])
#defi ne stdout (& .iob[1])
#define stderr (&.iob[2])

enum _fl ags {
_ = 01, /[* file open for reading */
_WITE = 02, [* file open for witing */
_UNBUF = 04, [* file is unbuffered */
_ECF = 010, /* EOF has occurred on this file */
_ERR = 020 /* error occurred on this file */

b

int _fillbuf(FILE *);
int _flushbuf(int, FILE *);

#def i ne feof (p) ((p)->flag & EOF) '= 0)
#define ferror(p) ((p)->flag & ERR) !'= 0)
#define fil eno(p) ((p)->fd)

#defi ne getc(p) (--(p)-=cnt >= 0\

? (unsigned char) *(p)->ptr++ : _fillbuf(p))
#define putc(x,p) (--(p)->cnt >= 0\

? *(p)->ptr++ = (x) : _flushbuf ((x),p))

#def i ne getchar () getc(stdin)
#defi ne putcher(x) putc((x), stdout)

The getc macro normaly decrements the count, advances the pointer, and returns the
character. (Recall that a long #defi ne is continued with a backsash.) If the count goes
negative, however, get ¢ cdls the function _fil | buf to replenish the buffer, re-initidize the
structure contents, and return a character. The characters are returned unsi gned, which
ensures that all characters will be positive.

Although we will not discuss any details, we have included the definition of put ¢ to show that
it operates in much the same way as get c, caling afunction _f | ushbuf when its buffer is full.
We have dso included macros for accessing the error and end-of-file status and the file
descriptor.

The function f open can now be written. Most of f open is concerned with getting the file
opened and positioned at the right place, and setting the flag bits to indicate the proper state.
f open does not alocate any buffer space; thisisdoneby _fi | | buf when thefileisfirst read.
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#i ncl ude <fcntl. h>
#i ncl ude "syscal |l s. h"
#def i ne PERVS 0666 /* RWfor owner, group, others */

FI LE *fopen(char *nanme, char *node)

int fd;

FI LE *fp;

if (*node !="'r' && *node !="'wW && *npde !="a'")
return NULL;

for (fp = _iob; fp < _iob + OPEN_MAX; fp++)
if ((fp->flag & (_READ| WRITE)) == 0)

br eak; /* found free slot */
if (fp >= _iob + OPEN.MAX) /* no free slots */
return NULL;

if (*rmode == 'W)
fd = creat (name, PERMS);
else if (*mobde == "a') {
if ((fd = open(name, O WRONLY, 0)) == -1)
fd = creat (name, PERMS);
| seek(fd, OL, 2);

} else
fd = open(name, O RDONLY, O0);

if (fd == -1) /* couldn't access nane */
return NULL;

fp->fd = fd;

fp->cnt = O;

fp->base = NULL;

fp->flag = (*node == '"r') ? _READ : _WRITE;

return fp;

}
This version of f open does not handle dl of the access mode possibilities of the standard,

though adding them would not take much code. In particular, our f open does not recognize
the “b" that signals binary access, since that is meaningless on UNIX systems, nor the ~+" that
permits both reading and writing.

The first cal to getc for a particular file finds a count of zero, which forces a cal of
_fillbuf.If _fillbuf finds that the file is not open for reading, it returns ECF immediately.
Otherwisg, it tries to allocate a buffer (if reading is to be buffered).

Once the buffer is established, _fi || buf calsread to fill it, sets the count and pointers, and
returns the character at the beginning of the buffer. Subsequent callsto _fi I | buf will find a
buffer allocated.

#i ncl ude "syscalls. h"

[* _fillbuf: allocate and fill input buffer */
int _fillbuf(FILE *fp)

i nt bufsize;

if ((fp->flag& READ| ECF ERR)) != READ)
return ECF;
bufsize = (fp->flag & _UNBUF) ? 1 : BUFSI Z;
if (fp->base == NULL) /* no buffer yet */
if ((fp->base = (char *) mall oc(bufsize)) == NULL)
return EOF; /[* can't get buffer */
fp->ptr = fp->base;
fp->cnt = read(fp->fd, fp->ptr, bufsize);
if (--fp->cnt < 0) {
if (fp->cnt == -1)
fp->flag | = _EOF;
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el se
fp->flag | = ERR
fp->cnt = O;
return ECF;

return (unsigned char) *fp->ptr++;

}
The only remaining loose end is how everything gets started. The array _i ob must be defined

and initialized for st di n, st dout and st derr:

FILE _i ob[ OPEN_MAX] = { [* stdin, stdout, stderr */
{ 0, (char *) 0, (char *) 0, _READ, O },
{ 0, (char *) 0, (char *) 0, WRITE, 1},
{ 0, (char *) 0, (char *) 0, WRITE, | _UNBUF, 2}
H
The initialization of the f | ag part of the structure shows that st di n iSto be read, st dout isto
be written, and st der r isto be written unbuffered.

Exercise 8-2. Rewrite fopen and _fill buf with fields instead of explicit bit operations.
Compare code size and execution speed.

Exercise 8-3. Design and write _f 1 ushbuf , ff1 ush, and f cl ose.

Exercise 8-4. The standard library function

int fseek(FILE *fp, long offset, int origin)
isidentical to | seek except that f p is afile pointer instead of afile descriptor and return value
isanint status, not a position. Write f seek. Make sure that your f seek coordinates properly
with the buffering done for the other functions of the library.

8.6 Example- Listing Directories

A different kind of file system interaction is sometimes called for - determining information
about afile, not what it contains. A directory-listing program such as the UNIX command | s
is an example - it prints the names of files in a directory, and, optionally, other information,
such as sizes, permissions, and so on. The MS-DOS di r command is analogous.

Since a UNIX directory is just afile I's need only read it to retrieve the filenames. But is is
necessary to use a system call to access other information about a file, such as its size. On
other systems, a system cal may be needed even to access filenames; this is the case on MS-
DOS for instance. What we want is provide access to the information in a relatively system-
independent way, even though the implementation may be highly system-dependent.

We will illustrate some of this by writing a program called f si ze. f si ze is a special form of
| s that prints the sizes of dl files named in its commandline argument list. If one of thefilesis
adirectory, f si ze applies itsalf recursively to that directory. If there are no arguments at dl, it
processes the current directory.

Let us begin with a short review of UNIX file system structure. A directory is a file that
contains alist of filenames and some indication of where they are located. The ““location” is an
index into another table cdled the “inode ligt." The inode for a file is where dl information
about the file except its name is kept. A directory entry generally consists of only two items,
the filename and an inode number.

Regrettably, the format and precise contents of a directory are not the same on dl versions of
the system. So we will divide the task into two pieces to try to isolate the non-portable parts.
The outer level defines a structure called a Di rent and three routines opendi r, r eaddi r, and
cl osedi r to provide system-independent access to the name and inode number in a directory
entry. We will write f si ze with this interface. Then we will show how to implement these on
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systems that use the same directory structure as Version 7 and System V UNIX; variants are
left as exercises.

The Di rent structure contains the inode number and the name. The maximum length of a
filename component is NAVE_MAX, which is a system-dependent value. opendir returns a
pointer to astructure caled DI R, analogous to FI LE, which isused by r eaddi r and cl osedi r.
Thisinformation is collected into afile called di rent . h.

#defi ne NAME_ MAX 14 /* |ongest filename conponent; */
/* system dependent */

typedef struct { /* portable directory entry */
 ong i no; /* inode nunber */
char nane[ NAVE_NMAX+1] ; /[* nane + '\0" term nator */
} Dirent;
typedef struct { /* minimal DIR no buffering, etc. */
int fd; [* file descriptor for the directory */
Dirent d; /* the directory entry */
} DR

DI R *opendi r (char *dirnane);
Dirent *readdir(DIR *dfd);
void closedir(DIR *dfd);

The system call st at takes a filename and returns dl of the information in the inode for that
file, or - 1 if thereisan error. That is,

char *nane;
struct stat stbuf;
int stat(char *, struct stat *);

st at (name, &stbuf);
fills the structure st buf with the inode information for the file name. The structure describing
the value returned by st at isin <sys/ st at . h>, and typically looks like this:

struct stat /* inode information returned by stat */

{
dev_t st _dev; /* device of inode */
i no_t st _ino; [* inode nunber */
short st _node; /* node bits */
short st _nli nk; /* nunber of links to file */
short st _uid; /* owners user id */
short st _gid; /* owners group id */
dev_t st _rdev; [* for special files */
of f _t st _si ze; [* file size in characters */
time_t st _atine; /* tinme |ast accessed */
time_t st_ntine; /[* time last nodified */
time_t st _ctine; /* time originally created */
H

Most of these values are explained by the comment fields. The types like dev_t andino_t are
defined in <sys/ t ypes. h>, which must be included too.

The st _node entry contains a set of flags describing the file. The flag definitions are aso
included in <sys/ t ypes. h>; we need only the part that deals with file type:

#define S | FMI 0160000 /* type of file: */
#define S IFDIR 0040000 /* directory */

#define S IFCHR 0020000 /* character special */
#define S_ | FBLK 0060000 /* block special */
#define S_IFREG 0010000 /* regular */

/* o.00F

~
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Now we are ready to write the program f si ze. If the mode obtained from st at indicates that
afile is not a directory, then the size is a hand and can be printed directly. If the name is a
directory, however, then we have to process that directory one file at a time; it may in turn
contain sub-directories, so the processis recursive.

The main routine deals with command-line arguments; it hands each argument to the function
fsize.

#i ncl ude <stdi o. h>

#i ncl ude <string. h>

#i ncl ude "syscal |l s. h"

#i nclude <fcntl. h> [* flags for read and wite */
#i ncl ude <sys/types.h> [* typedefs */

#include <sys/stat.h> /* structure returned by stat */
#i nclude "dirent. h"

voi d fsize(char *)

[* print file name */
mai n(i nt argc, char **argv)

if (argc == 1) [* default: current directory */
fsize(".");
el se
while (--argc > 0)
fsize(*++argv);
return O;

}
The function f si ze prints the size of the file. If the file is a directory, however, fsi ze first

cdls di rwal k to handle dl the files in it. Note how the flag names S_I FMI and S_I FDI R are
used to decide if thefile is a directory. Parenthesization matters, because the precedence of & is
lower than that of ==.

int stat(char *, struct stat *);
void dirwal k(char *, void (*fcn)(char *));

[* fsize: print the nanme of file "name" */
voi d fsize(char *nane)

{
struct stat stbuf;
if (stat(name, &stbuf) == -1) {
fprintf(stderr, "fsize: can't access %\n", nane);
return;
}
if ((stbuf.st_node & S IFMI) == S I FDI R
di rwal k( name, fsize);
printf("98ld %\n", stbuf.st_size, name);
}

The function di rwal k is a genera routine that applies a function to each file in a directory. It
opens the directory, loops through the files in it, cdling the function on each, then closes the
directory and returns. Since f si ze calsdi rwal k on each directory, the two functions call each
other recursively.

#defi ne MAX_PATH 1024

/* dirwal k: apply fcn to all files in dir */
voi d dirwal k(char *dir, void (*fcn)(char *))
{

char nanme[ MAX_PATH] ;

Dirent *dp;

D R *dfd;
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if ((dfd = opendir(dir)) == NULL) {
fprintf(stderr, "dirwal k: can't open %\n", dir);
return;

}
while ((dp = readdir(dfd)) !'= NULL) {
if (strcnp(dp->nanme, ".") == 0
|| strcnp(dp->nane, ".."))
conti nue; /* skip self and parent */
if (strlen(dir)+strlen(dp->name)+2 > sizeof (nane))
fprintf(stderr, "dirwal k: name % % too |ong\n"
dir, dp->nane);
el se {
sprintf(nane, "%/ %", dir, dp->name);
(*fcn) (name);

}
cl osedir (dfd);

}
Each call to r eaddi r returns a pointer to information for the next file, or NULL when there are
no files left. Each directory always contains entries for itself, called ". ", and its parent, ". . ";

these must be skipped, or the program will loop forever.

Down to this last level, the code is independent of how directories are formatted. The next step
isto present minima versions of opendi r, readdi r, and cl osedi r for a specific system. The
following routines are for Version 7 and System V UNIX systems; they use the directory
information in the header <sys/ di r. h>, which looks like this:

#i f ndef DIRSI Z
#define DIRSIZ 14

#endi f
struct direct { /[* directory entry */

ino_t d_ino; [* inode nunber */

char d_nane[DIRSIZ]; /* long nane does not have '\0'" */
H

Some versions of the system permit much longer names and have a more complicated directory
structure.

The type i no_t is atypedef that describes the index into the inode list. It happens to be
unsi gned short on the systems we use regularly, but this is not the sort of information to
embed in a program; it might be different on a different system, so the t ypedef is better. A
complete set of ““system" typesisfound in <sys/ t ypes. h>.

opendi r opens the directory, verifies that the file is a directory (this time by the system call
fstat, which is like stat except that it applies to a file descriptor), alocates a directory
structure, and records the information:

int fstat(int fd, struct stat *);

/* opendir: open a directory for readdir calls */
DI R *opendi r (char *dirnane)

int fd;
struct stat stbuf;
DR *dp

((fd = open(dirnane, O RDONLY, 0)) == -

fstat(fd, &stbuf) == -

(stbuf.st_nmbde & S IFMIN) I'= S IFDR

(dp = (DR *) malloc(sizeof (DR))) == NULL)
return NULL;

dp->fd = fd;

return dp;

if
|
|
N
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cl osedi r closesthe directory file and frees the space:

/* closedir: close directory opened by opendir */
voi d cl osedir(DIR *dp)

if (dp) {
cl ose(dp->fd);
free(dp);

}

} - - -
Findly, readdi r usesread to read each directory entry. If a directory dot is not currently in
use (because a file has been removed), the inode number is zero, and this position is skipped.
Otherwise, the inode number and name are placed in ast at i ¢ structure and a pointer to that is
returned to the user. Each call overwrites the information from the previous one.

#include <sys/dir.h> /* |local directory structure */

/* readdir: read directory entries in sequence */
Dirent *readdir (DI R *dp)

{
struct direct dirbuf; /* local directory structure */
static Dirent d; /[* return: portable structure */
while (read(dp->fd, (char *) &dirbuf, sizeof(dirbuf))
== si zeof (dirbuf)) {
if (dirbuf.d_ino == 0) /* slot not in use */
conti nue;
d.ino = dirbuf.d_ino;
strncpy(d. nanme, dirbuf.d _nane, DIRSIZ);
d.nane[DIRSI Z] = '\0"; /* ensure termnation */
return &d;
}
return NULL;
}

Although the fsi ze program is rather specialized, it does illustrate a couple of important
ideas. First, many programs are not “system programs’; they merely use information that is
maintained by the operating system. For such programs, it is crucial that the representation of
the information appear only in standard headers, and that programs include those headers
instead of embedding the declarations in themselves. The second observation is that with care
it is possible to create an interface to system-dependent objects that is itself relatively system-
independent. The functions of the standard library are good examples.

Exercise 8-5. Modify the f si ze program to print the other information contained in the inode
entry.

8.7 Example - A Storage Allocator

In Chapter 5, we presented a vary limited stack-oriented storage allocator. The version that we
will now write is unrestricted. Calsto nal | oc and f ree may occur in any order; mal | oc cals
upon the operating system to obtain more memory as necessary. These routines illustrate some
of the considerations involved in writing machine-dependent code in a relatively machine-
independent way, and also show areal-life application of structures, unions and t ypedef .

Rather than alocating from a compiled-in fixed-size array, mal | oc will request space from the
operating system as needed. Since other activities in the program may also request space
without caling this allocator, the space that mal | oc manages may not be contiguous. Thus its
free storage is kept as a ligt of free blocks. Each block contains a size, a pointer to the next
block, and the space itself. The blocks are kept in order of increasing storage address, and the
last block (highest address) points to the first.
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free list
SR in [ in |7 T
....... 1use use |use R b 1=

I:l free, owned by malloc
in use, owned by malloc
not owned by malloc

When a request is made, the free ligt is scanned until a big-enough block is found. This
algorithm is called ““firgt fit," by contrast with ““best fit," which looks for the smalest block
that will satisfy the request. If the block is exactly the size requested it is unlinked from the list
and returned to the user. If the block istoo hig, it is split, and the proper amount is returned to
the user while the residue remains on the free list. If no big-enough block is found, another
large chunk is obtained by the operating system and linked into the free list.

Freeing also causes a search of the free ligt, to find the proper place to insert the block being
freed. If the block being freed is adjacent to a free block on either side, it is coalesced with it
into a single bigger block, so storage does not become too fragmented. Determining the
adjacency is easy because the free list is maintained in order of decreasing address.

One problem, which we aluded to in Chapter 5, is to ensure that the storage returned by
mal | oc is aligned properly for the objects that will be stored init. Although machines vary, for
each machine there is a most restrictive type: if the most restrictive type can be stored a a
particular address, dl other types may be also. On some machines, the most restrictive type isa
doubl e; on others, i nt or | ong suffices.

A free block contains a pointer to the next block in the chain, arecord of the size of the block,
and then the free space itself; the control information at the beginning is caled the " header."
To amplify adignment, dl blocks are multiples of the header size, and the header is adigned
properly. This is achieved by a union that contains the desired header structure and an instance
of the most restrictive alignment type, which we have arbitrarily made a | ong:

typedef long Align; [* for alignnent to | ong boundary */
uni on header ({ /* bl ock header */
struct {
uni on header *ptr; /* next block if on free list */
unsi gned si ze; /* size of this block */
}s;
Align x; /* force alignment of blocks */
H

t ypedef uni on header Header;
The Align fidd is never used; it just forces each header to be aligned on a worst-case
boundary.

In mal | oc, the requested size in characters is rounded up to the proper number of header-sized
units; the block that will be alocated contains one more unit, for the header itself, and this is
the value recorded in the si ze fidd of the header. The pointer returned by mal | oc points at
the free space, not at the header itself. The user can do anything with the space requested, but
if anything is written outside of the allocated space thelist is likely to be scrambled.
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/r points to next free block

/ s1ze
L address returned to user

A block returned by malloc

The size fidd is necessary because the blocks controlled by nal | oc need not be contiguous - it
is not possible to compute sizes by pointer arithmetic.

The variable base is used to get started. If freep iSNULL, as it is at the first cdl of mal | oc,
then a degenerate free lig is created; it contains one block of size zero, and points to itself. In
any case, the free ligt is then searched. The search for a free block of adequate size begins at
the point (freep) where the last block was found; this strategy helps keep the ligt
homogeneous. If a too-big block is found, the tail end is returned to the user; in this way the
header of the origina needs only to have its size adjusted. In dl cases, the pointer returned to
the user points to the free space within the block, which begins one unit beyond the header.

static Header base; /[* enmpty list to get started */
static Header *freep = NULL; [* start of free list */

/* malloc: general-purpose storage allocator */
voi d *mal | oc(unsi gned nbytes)

{
Header *p, *prevp
Header *noreroce(unsigned);
unsi gned nunits;
nunits = (nbytes+si zeof (Header)-1)/si zeof (header) + 1
if ((prevp = freep) == NULL) { /* no free list yet */
base.s.ptr = freeptr = prevptr = &base;
base.s.size = 0;
}
for (p = prevp->s.ptr; ; prevp = p, p = p->s.ptr) {
if (p->s.size >= nunits) { /* big enough */
if (p->s.size == nunits) [/* exactly */
prevp->s.ptr = p->s.ptr;
el se { /* allocate tail end */
p->s.size -= nunits;
p += p->s.size;
p->s.size = nunits;
}
freep = prevp;
return (void *)(p+l);
if (p==freep) /* wapped around free list */
if ((p = norecore(nunits)) == NULL)
return NULL; /* none left */
}
}

The function nor ecor e obtains storage from the operating system. The details of how it does
this vary from system to system. Since asking the system for memory is a comparatively
expensive operation. we don't want to do that on every cal to mal | oc, SO nor ecor e requests
a least NALLCC units; this larger block will be chopped up as needed. After setting the size
field, mor ecor e inserts the additional memory into the arena by calling f r ee.
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The UNIX system call sbrk(n) returns a pointer to n more bytes of storage. sbrk returns - 1
if there was no space, even though NULL could have been a better design. The - 1 must be cast
to char * 0 it can be compared with the return value. Again, casts make the function
relatively immune to the details of pointer representation on different machines. There is ill
one assumption, however, that pointers to different blocks returned by sbrk can be
meaningfully compared. This is not guaranteed by the standard, which permits pointer
comparisons only within an array. Thus this version of nal | oc is portable only among
machines for which general pointer comparison is meaningful.

#defi ne NALLOC 1024 /* mnimm#units to request */

/* nmorecore: ask systemfor nore nmenory */
static Header *norecore(unsigned nu)
{

char *cp, *sbrk(int);

Header *up;

if (nu < NALLOQ)
nu = NALLOC

cp = sbrk(nu * sizeof (Header));

if (cp == (char *) -1) /* no space at all */
return NULL;

up = (Header *) cp;

up->s.size = nu;

free((void *)(up+l));

return freep;

}
free itself is the last thing. It scans the free list, starting at fr eep, looking for the place to

insert the free block. This is either between two existing blocks or at the end of the list. In any
case, if the block being freed is adjacent to either neighbor, the adjacent blocks are combined.
The only troubles are keeping the pointers pointing to the right things and the sizes correct.

/[* free: put block ap in free list */
void free(void *ap)

{
Header *bp, *p
bp = (Header *)ap - 1; /[* point to block header */
for (p = freep; !'(bp > p & bp < p->s.ptr); p = p->s.ptr)
if (p>= p->s.ptr & (bp > p || bp < p->s.ptr))
break; /* freed block at start or end of arena */
if (bp + bp->size == p->s.ptr) { /[* join to upper nbr */
bp->s.size += p->s.ptr->s.5si ze;
bp->s.ptr = p->s.ptr->s.ptr;
} else
bp->s.ptr = p->s.ptr;
if (p + p->size == bp) { /[* join to | ower nbr */
p->s.size += bp->s.size;
p->s.ptr = bp->s.ptr;
} else
p->s.ptr = bp;
freep = p;
}

Although storage allocation is intrinscally machine-dependent, the code above illustrates how
the machine dependencies can be controlled and confined to a very smal part of the program.
The use of typedef and uni on handles aignment (given that sbrk supplies an appropriate
pointer). Casts arrange that pointer conversions are made explicit, and even cope with a badly-
designed system interface. Even though the details here are related to storage alocation, the
general approach is applicable to other situations as well.
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Exercise 8-6. The standard library function cal | oc(n, si ze) returns a pointer to n objects of
gze size, with the storage initidized to zero. Write cal | oc, by cdling nall oc or by
modifying it.

Exercise 8-7. mal | oc accepts a size request without checking its plausihility; free believes
that the block it is asked to free contains avalid size field. Improve these routines so they make
more pains with error checking.

Exercise 8-8. Write a routine bf r ee(p, n) that will free any arbitrary block p of n characters
into the free lis maintained by nal | oc and free. By using bf ree, a user can add a static or
externa array to the freelist at any time.
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Appendix A - Reference Manual

A.1l Introduction

This manua describes the C language specified by the draft submitted to ANS| on 31 October,
1988, for approval as ~American Standard for Information Systems - programming Language
C, X3.159-1989." The manua is an interpretation of the proposed standard, not the standard
itself, athough care has been taken to make it areliable guide to the language.

For the most part, this document follows the broad outline of the standard, which in turn
follows that of the first edition of this book, although the organization differs in detail. Except
for renaming a few productions, and not formalizing the definitions of the lexical tokens or the
preprocessor, the grammar given here for the language proper is equivalent to that of the
standard.

Throughout this manual, commentary material is indented and written in smaller type, as thisis. Most

often these comments highlight ways in which ANSI Standard C differs from the language defined by
the first edition of this book, or from refinements subsequently introduced in various compilers.

A.2 Lexical Conventions

A program consists of one or more translation units stored in files. It is trandated in severa
phases, which are described in Par.A.12. The first phases do low-level lexica transformations,
carry out directives introduced by the lines beginning with the # character, and perform macro
definition and expansion. When the preprocessing of Par.A.12 is complete, the program has
been reduced to a sequence of tokens.

A.2.1 Tokens

There are 9x classes of tokens: identifiers, keywords, constants, string literals, operators, and
other separators. Blanks, horizontal and vertical tabs, newlines, formfeeds and comments as
described below (collectively, “white space") are ignored except as they separate tokens.
Some white space is required to separate otherwise adjacent identifiers, keywords, and
constants.

If the input stream has been separated into tokens up to a given character, the next token isthe
longest string of characters that could constitute a token.

A.2.2 Comments

The characters / * introduce a comment, which terminates with the characters */ . Comments
do not nest, and they do not occur within a string or character literals.

A.2.3 ldentifiers

An identifier is a sequence of letters and digits. The first character must be a letter; the
underscore _ counts as a letter. Upper and lower case letters are different. Identifiers may have
any length, and for internal identifiers, at least the first 31 characters are significant; some
implementations may take more characters significant. Internal identifiers include preprocessor
macro names and al other names that do not have externa linkage (Par.A.11.2). Identifiers
with external linkage are more restricted: implementations may make as few as the first six
characters significant, and may ignore case distinctions.

A.2.4 Keywords
The following identifiers are reserved for the use as keywords, and may not be used otherwise:

auto doubl e i nt struct
br eak el se | ong switch



155

case enum register t ypedef
char extern return uni on
const f I oat short unsi gned
conti nue for si gned voi d

def aul t got o si zeof vol atile
do i f static whi | e

Some implementations a so reserve the wordsf or t ran and asm
The keywords const , si gned, and vol ati | e are new with the ANSI standard; enumand voi d
are new since the first edition, but in common use; ent r y, formerly reserved but never used, is no
longer reserved.

A.2.5 Constants
There are severa kinds of constants. Each has a data type; Par.A.4.2 discusses the basic types:

constant:
integer-constant
character-constant
floating-constant
enumer ation-constant

A.25.1 Integer Constants

An integer constant consisting of a sequence of digits is taken to be octal if it begins with O
(digit zero), decimal otherwise. Octal constants do not contain the digits 8 or 9. A sequence of
digits preceded by 0x or 0x (digit zero) is taken to be a hexadecimal integer. The hexadecimal
digitsinclude a or Athrough f or F with values 10 through 15.

An integer constant may be suffixed by the letter u or U, to specify that it is unsigned. It may
also be suffixed by theletter | or L to specify that it islong.

The type of an integer constant depends on its form, value and suffix. (See Par.A.4 for a
discussion of types). If it is unsuffixed and decimd, it has the first of these types in which its
value can be represented: i nt, I ong int, unsigned long int. If it is unsuffixed, octal or
hexadecimal, it has the first possible of these types: i nt, unsi gned int, | ong int, unsi gned
long int. If it is suffixed by u or U, then unsi gned int, unsigned long int. If it is
suffixed by I or L, thenlong int, unsigned long int. If aninteger constant is suffixed by
UL, itisunsi gned | ong.

The elaboration of the types of integer constants goes considerably beyond the first edition, which
merely caused large integer constantsto bel ong. The U suffixes are new.

A.2.5.2 Character Constants

A character constant is a sequence of one or more characters enclosed in single quotes as in
'x' . The vaue of a character constant with only one character is the numeric value of the
character in the machine's character set at execution time. The value of a multi-character
constant is implementation-defined.

Character constants do not contain the' character or newlines; in order to represent them, and
certain other characters, the following escape sequences may be used:

newline 'NL(LF) \n backslash |\ \\ |
horizontal tab  HT \t quesionmark ? \? |
vertical tab | VT \v snglequote ' \'
backspace  BS \b doublequote " \"
carriage return CR \r  octal number 000 \0oo
formfeed FF \f  hexnumber | hh \xhh
audiblealert BEL  \a | |
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The escape \ ooo consists of the backdash followed by 1, 2, or 3 octal digits, which are taken
to specify the value of the desired character. A common example of this construction is\ 0 (not
followed by a digit), which specifies the character NUL. The escape \ xhh consists of the
backdash, followed by x, followed by hexadecimal digits, which are taken to specify the value
of the desired character. Thereisno limit on the number of digits, but the behavior is undefined
if the resulting character value exceeds that of the largest character. For either octal or
hexadecimal escape characters, if the implementation treats the char type as signed, the vaue
is sign-extended as if cast to char type. If the character following the \ is not one of those
specified, the behavior is undefined.

In some implementations, there is an extended set of characters that cannot be represented in
the char type. A constant in this extended set is written with a preceding L, for example L' x' ,
and is called a wide character constant. Such a constant has type wchar _t , an integral type
defined in the standard header <st ddef . h>. As with ordinary character constants, hexadecimal
escapes may be used; the effect is undefined if the specified value exceeds that representable
withwchar _t.

Some of these escape sequences are new, in particular the hexadecima character representation.

Extended characters are also new. The character sets commonly used in the Americas and western

Europe can be encoded to fit in the char type the main intent in adding wchar t was to
accommodate Asian languages.

A.2.5.3 Floating Constants

A floating constant consists of an integer part, a decima part, a fraction part, an e or E, an
optionally signed integer exponent and an optional type suffix, one of f, F, I , or L. The integer
and fraction parts both consist of a sequence of digits. Either the integer part, or the fraction
part (not both) may be missing; either the decima point or the e and the exponent (not both)
may be missng. The type is determined by the suffix; F or f makesit f1 oat, L or I makes it
| ong doubl e, otherwiseit is doubl e.

A2.5.4 Enumeration Constants
Identifiers declared as enumerators (see Par.A.8.4) are constants of typei nt .

A.2.6 String Literals

A string literal, aso called a string constant, is a sequence of characters surrounded by double
quotes as in"...". A string has type “array of characters' and storage class static (see
Par.A.3 below) and is initidlized with the given characters. Whether identical string literals are
distinct is implementation-defined, and the behavior of a program that attempts to alter a string
litera is undefined.

Adjacent string literals are concatenated into a single string. After any concatenation, a null
byte \ 0 is appended to the string so that programs that scan the string can find its end. String
literals do not contain newline or double-quote characters; in order to represent them, the same
escape sequences as for character constants are available.

As with character constants, string literals in an extended character set are written with a
preceding L, as in L"...". Wide-character string literals have type “array of wchar _t."
Concatenation of ordinary and wide string literals is undefined.

The specification that string literals need not be distinct, and the prohibition against modifying them,

are new in the ANSI standard, as is the concatenation of adjacent string literals. Wide-character string
literals are new.

A.3 Syntax Notation

In the syntax notation used in this manua, syntactic categories are indicated by italic type, and
literal words and characters in typew it er style. Alternative categories are usualy listed on
separate lines; in afew cases, along set of narrow alternatives is presented on one line, marked
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by the phrase ““one of." An optional terminal or nonterminal symbol carries the subscript ~opt,"
so that, for example,

{ expressiong: }

means an optional expression, enclosed in braces. The syntax is summarized in Par.A.13.

Unlike the grammar given in the first edition of this book, the one given here makes precedence and
associativity of expression operators explicit.

A.4 Meaning of |dentifiers

Identifiers, or names, refer to a variety of things: functions; tags of structures, unions, and
enumerations, members of structures or unions, enumeration constants; typedef names; and
objects. An object, sometimes called a variable, is a location in storage, and its interpretation
depends on two main attributes: its storage class and its type. The storage class determines the
lifetime of the storage associated with the identified object; the type determines the meaning of
the values found in the identified object. A name aso has a scope, which is the region of the
program in which it is known, and a linkage, which determines whether the same name in
another scope refers to the same object or function. Scope and linkage are discussed in
Par.A.11.

A.4.1 Storage Class

There are two storage classes. automatic and static. Severa keywords, together with the
context of an object's declaration, specify its storage class. Automatic objects are loca to a
block (Par.9.3), and are discarded on exit from the block. Declarations within a block create
automatic objects if no storage class specification is mentioned, or if the aut o specifier is used.
Objects declared regi st er are automatic, and are (if possible) stored in fast registers of the
machine.

Static objects may be local to a block or external to al blocks, but in either case retain their
values across exit from and reentry to functions and blocks. Within a block, including a block
that provides the code for a function, static objects are declared with the keyword st ati c. The
objects declared outside dl blocks, a the same level as function definitions, are aways static.
They may be made loca to a particular translation unit by use of the stati c keyword; this
gives them internal linkage. They become globa to an entire program by omitting an explicit
storage class, or by using the keyword ext er n; this gives them external linkage.

A.4.2 Basic Types

There are severa fundamental types. The standard header <l i mi t's. h> described in Appendix
B defines the largest and smallest values of each type in the local implementation. The numbers
given in Appendix B show the smallest acceptable magnitudes.

Objects declared as characters (char ) are large enough to store any member of the execution
character set. If a genuine character from that set is stored in a char object, its vaue is
equivalent to the integer code for the character, and is non-negative. Other quantities may be
stored into char variables, but the available range of values, and especialy whether the valueis
signed, is implementation-dependent.

Unsigned characters declared unsi gned char consume the same amount of space as plain
characters, but always appear non-negative; explicitly signed characters declared si gned char
likewise take the same space as plain characters.

unsigned char type does not appear in the first edition of this book, but isin common use. si gned
char isnew.

Besides the char types, up to three sizes of integer, declared short int,int,and!ong int,
are available. Plain int objects have the natural size suggested by the host machine
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architecture; the other sizes are provided to meet specia needs. Longer integers provide at
least as much storage as shorter ones, but the implementation may make plain integers
equivalent to either short integers, or long integers. Thei nt types al represent signed values
unless specified otherwise.

Unsigned integers, declared using the keyword unsi gned, obey the laws of arithmetic modulo
2" where n is the number of bits in the representation, and thus arithmetic on unsigned
guantities can never overflow. The set of non-negative values that can be stored in a signed
object is a subset of the values that can be stored in the corresponding unsigned object, and the
representation for the overlapping valuesis the same.

Any of single precision floating point (f | oat ), double precision floating point (doubl e), and
extra precision floating point (1 ong doubl e) may be synonymous, but the ones later in the list
are at |least as precise as those before.

| ong doubl e isnew. Thefirst edition made | ong fl oat equivaent to doubl e; thelocution has
been withdrawn.

Enumerations are unique types that have integral values; associated with each enumeration is a
set of named constants (Par.A.8.4). Enumerations behave like integers, but it is common for a
compiler to issue a warning when an object of a particular enumeration is assigned something
other than one of its constants, or an expression of its type.

Because objects of these types can be interpreted as numbers, they will be referred to as
arithmetic types. Types char, and int of dl sizes, each with or without sign, and aso
enumeration types, will collectively be called integral types. The types f 1 oat, doubl e, and
| ong doubl e will be caled floating types.

The voi d type specifies an empty set of values. It is used as the type returned by functions that
generate no value.

A.4.3 Derived types

Beside the basic types, there is a conceptually infinite class of derived types constructed from
the fundamental types in the following ways:

arrays of objects of agiven type;

functions returning objects of a given type;

pointers to objects of agiven type;

structures containing a sequence of objects of various types;

unions capable of containing any of one of several objects of various types.

In general these methods of constructing objects can be applied recursively.

A.4.4 Type Qualifiers

An object's type may have additional qudifiers. Declaring an object const announces that its
value will not be changed; declaring it vol ati| e announces that it has specid properties
relevant to optimization. Neither qualifier affects the range of values or arithmetic properties of
the object. Qualifiers are discussed in Par.A.8.2.

A.5 Objectsand Lvalues

An Object is a named region of storage; an lvalue is an expression referring to an object. An
obvious example of an Ivalue expression is an identifier with suitable type and storage class.
There are operators that yield lvalues, if E is an expression of pointer type, then *E is an lvalue
expression referring to the object to which E points. The name “lvalue’ comes from the
assgnment expression E1 = E2 in which the left operand E1 must be an lvalue expression. The
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discussion of each operator specifies whether it expects lvalue operands and whether it yields
an lvalue.

A.6 Conversions

Some operators may, depending on their operands, cause conversion of the value of an
operand from one type to another. This section explains the result to be expected from such
conversions. Par.6.5 summarizes the conversions demanded by most ordinary operators; it will
be supplemented as required by the discussion of each operator.

A.6.1 Integral Promotion

A character, a short integer, or an integer bit-field, al either signed or not, or an object of
enumeration type, may be used in an expression wherever an integer may be used. If an i nt
can represent dl the values of the origind type, then the value is converted to i nt ; otherwise
the value is converted to unsi gned i nt . Thisprocessis caled integral promotion.

A.6.2 Integral Conversions

Any integer is converted to a given unsigned type by finding the smallest non-negative value
that is congruent to that integer, modulo one more than the largest vaue that can be
represented in the unsigned type. In a two's complement representation, this is equivalent to
left-truncation if the bit pattern of the unsigned type is narrower, and to zero-filling unsigned
values and sign-extending signed values if the unsigned type is wider.

When any integer is converted to a signed type, the value is unchanged if it can be represented
in the new type and is implementation-defined otherwise.

A.6.3 Integer and Floating

When a value of floating type is converted to integral type, the fractional part is discarded; if
the resulting value cannot be represented in the integral type, the behavior is undefined. In
particular, the result of converting negative floating values to unsigned integral types is not
specified.

When a value of integral type is converted to floating, and the value is in the representable
range but is not exactly representable, then the result may be either the next higher or next
lower representable value. If the result is out of range, the behavior is undefined.

A.6.4 Floating Types

When a less precise floating value is converted to an equally or more precise floating type, the
value is unchanged. When a more precise floating vaue is converted to a less precise floating
type, and the vaue is within representable range, the result may be either the next higher or the
next lower representable value. If the result is out of range, the behavior is undefined.

A.6.5 Arithmetic Conversions

Many operators cause conversions and yield result types in a smilar way. The effect is to bring
operands into a common type, which is aso the type of the result. This pattern is called the
usual arithmetic conversions.

First, if either operand is| ong doubl e, the other is converted to | ong doubl e.
Otherwise, if either operand is doubl e, the other is converted to doubl e.
Otherwise, if either operand isf | oat , the other is converted to f | oat .

Otherwise, the integral promotions are performed on both operands; then, if ether
operand is unsi gned | ong i nt, the other is converted to unsi gned | ong int.
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Otherwise, if one operand is 1 ong int and the other is unsi gned int, the effect
depends on whether al ong int can represent dl values of an unsi gned int; if o,
the unsi gned int operand is converted to | ong int; if not, both are converted to
unsi gned | ong int.

Otherwise, if one operandis| ong i nt, the other is convertedtol ong int.

Otherwise, if either operand is unsi gned int, the other is converted to unsi gned
int.

Otherwise, both operands have typei nt .

There are two changes here. First, arithmetic on f | oat operands may be done in single precision,
rather than double; the first edition specified that all floating arithmetic was double precision. Second,
shorter unsigned types, when combined with a larger signed type, do not propagate the unsigned
property to the result type; in the first edition, the unsigned aways dominated. The new rules are
slightly more complicated, but reduce somewhat the surprises that may occur when an unsigned
quantity meets signed. Unexpected results may still occur when an unsigned expression is compared to
asigned expression of the same size.

A.6.6 Pointersand Integers

An expression of integral type may be added to or subtracted from a pointer; in such a case the
integral expression is converted as specified in the discussion of the addition operator
(Par.A.7.7).

Two pointers to objects of the same type, in the same array, may be subtracted; the result is
converted to an integer as specified in the discussion of the subtraction operator (Par.A.7.7).

An integral constant expression with vaue O, or such an expression cast to typevoid *, may
be converted, by a cast, by assignment, or by comparison, to a pointer of any type. This
produces a null pointer that is equal to another null pointer of the same type, but unequa to
any pointer to afunction or object.

Certain other conversions involving pointers are permitted, but have implementation-defined
aspects. They must be specified by an explicit type-conversion operator, or cast (Pars.A.7.5
and A.8.8).

A pointer may be converted to an integra type large enough to hold it; the required size is
implementation-dependent. The mapping function is aso implementation-dependent.

A pointer to one type may be converted to a pointer to another type. The resulting pointer may
cause addressing exceptions if the subject pointer does not refer to an object suitably aligned in
storage. It is guaranteed that a pointer to an object may be converted to a pointer to an object
whose type requires less or equally strict storage aignment and back again without change; the
notion of “aignment" is implementation-dependent, but objects of the char types have least
strict alignment requirements. As described in Par.A.6.8, a pointer may also be converted to
typevoi d * and back again without change.

A pointer may be converted to another pointer whose type is the same except for the addition
or removal of qualifiers (Pars.A.4.4, A.8.2) of the object type to which the pointer refers. If
qualifiers are added, the new pointer is equivalent to the old except for restrictions implied by
the new qualifiers. If quaifiers are removed, operations on the underlying object remain subject
to the qualifiersin its actua declaration.

Findly, a pointer to a function may be converted to a pointer to another function type. Cdling
the function specified by the converted pointer is implementation-dependent; however, if the
converted pointer is reconverted to its original type, the result is identical to the origina
pointer.
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A.6.7Void

The (nonexistent) value of avoi d object may not be used in any way, and neither explicit nor
implicit conversion to any non-void type may be applied. Because a void expression denotes a
nonexistent value, such an expression may be used only where the vaue is not required, for
example as an expression statement (Par.A.9.2) or as the left operand of a comma operator
(Par.A.7.18).

An expression may be converted to type voi d by a cast. For example, a void cast documents
the discarding of the value of afunction call used as an expression statement.

voi d did not appear in the first edition of this book, but has become common since.

A.6.8 Pointersto Void

Any pointer to an object may be converted to type voi d * without loss of information. If the
result is converted back to the origina pointer type, the original pointer is recovered. Unlike
the pointer-to-pointer conversions discussed in Par.A.6.6, which generally require an explicit
cast, pointers may be assigned to and from pointers of type void *, and may be compared
with them.
This interpretation of voi d * pointers is new; previoudy, char * pointers played the role of
generic pointer. The ANSI standard specifically blesses the meeting of voi d * pointers with object
pointers in assignments and relationals, while requiring explicit casts for other pointer mixtures.

A.7 Expressions

The precedence of expression operators is the same as the order of the major subsections of
this section, highest precedence first. Thus, for example, the expressions referred to as the
operands of + (Par.A.7.7) are those expressions defined in Pars.A.7.1-A.7.6. Within each
subsection, the operators have the same precedence. Left- or right-associativity is specified in
each subsection for the operators discussed therein. The grammar given in Par.13 incorporates
the precedence and associativity of the operators.

The precedence and associativity of operators is fully specified, but the order of evaluation of
expressions is, with certain exceptions, undefined, even if the subexpressions involve side
effects. That is, unless the definition of the operator guarantees that its operands are evaluated
in a particular order, the implementation is free to evaluate operands in any order, or even to
interleave their evaluation. However, each operator combines the values produced by its
operandsin away compatible with the parsing of the expression in which it appears.
This rule revokes the previous freedom to reorder expressions with operators that are mathematically
commutative and associative, but can fail to be computationally associative. The change affects only
floating-point computations near the limits of their accuracy, and situations where overflow is
possible.
The handling of overflow, divide check, and other exceptions in expression evaluation is not
defined by the language. Most existing implementations of C ignore overflow in evaluation of
signed integral expressions and assignments, but this behavior is not guaranteed. Treatment of
divison by 0, and al floating-point exceptions, varies among implementations; sometimes it is
adjustable by a non-standard library function.

A.7.1 Pointer Conversion

If the type of an expression or subexpression is ““array of T," for some type T, then the vaue of
the expression is a pointer to the first object in the array, and the type of the expression is
dtered to “pointer to T." This conversion does not take place if the expression is in the
operand of the unary & operator, or of ++, - -, si zeof , or as the left operand of an assignment
operator or the . operator. Smilarly, an expression of type "“function returning T," except
when used as the operand of the & operator, is converted to " pointer to function returning T."

A.7.2 Primary Expressions
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Primary expressions are identifiers, constants, strings, or expressions in parentheses.

primary-expression
identifier
constant
string
(expression)

Anidentifier isa primary expression, provided it has been suitably declared as discussed below.
Its type is specified by its declaration. An identifier is an Ivalue if it refers to an object
(Par.A.5) and if itstypeis arithmetic, structure, union, or pointer.

A constant is a primary expression. Its type depends on its form as discussed in Par.A.2.5.

A dtring litera is a primary expression. Its type is originaly ““array of char" (for wide-char
strings, ~"array of wchar _t *), but following the rule given in Par.A.7.1, thisis usually modified
to “pointer to char" (wchar _t ) and the result is a pointer to the first character in the string.
The conversion also does not occur in certain initializers; see Par.A.8.7.

A parenthesized expression is a primary expression whose type and value are identical to those
of the unadorned expression. The precedence of parentheses does not affect whether the
expression isan Ivalue.

A.7.3 Postfix Expressions
The operators in postfix expressions group |eft to right.

postfix-expression:
primary-expression
postfix-expression[ expression]
postfix-expression(ar gument-expression-liStog)
postfix-expression.identifier
postfix-expression- >identifier
postfix-expression++
postfix-expression- -

argument-expression-list:
assignment-expression
assignment-expression-list, assignment-expression

A.7.3.1 Array References

A postfix expression followed by an expression in square brackets is a postfix expression
denoting a subscripted array reference. One of the two expressions must have type ““pointer to
T", where T is some type, and the other must have integral type; the type of the subscript
expression is T. The expression E1[ E2] is identical (by definition) to *((El) +(E2)). See
Par.A.8.6.2 for further discussion.

A.7.3.2 Function Calls

A function call is a postfix expression, caled the function designator, followed by parentheses
containing a possibly empty, comma-separated lis of assgnment expressions (Par.A7.17),
which constitute the arguments to the function. If the postfix expression consists of an

identifier for which no declaration exists in the current scope, the identifier is implicitly
declared asif the declaration

extern int identifier();
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had been given in the innermost block containing the function call. The postfix expression
(after possible explicit declaration and pointer generation, Par.A7.1) must be of type "~ pointer
to function returning T,"” for some type T, and the value of the function call hastype T.
In the first edition, the type was restricted to ““function," and an explicit * operator was required to
cal through pointers to functions. The ANSI standard blesses the practice of some existing compilers

by permitting the same syntax for calls to functions and to functions specified by pointers. The older
syntax is still usable.

The term argument is used for an expression passed by a function call; the term parameter is
used for an input object (or its identifier) received by a function definition, or described in a
function declaration. The terms “actua argument (parameter)" and "~ forma argument
(parameter)" respectively are sometimes used for the same distinction.

In preparing for the call to a function, a copy is made of each argument; al argument-passing
isstrictly by value. A function may change the values of its parameter objects, which are copies
of the argument expressions, but these changes cannot affect the values of the arguments.
However, it is possible to pass a pointer on the understanding that the function may change the
value of the object to which the pointer points.

There are two styles in which functions may be declared. In the new style, the types of
parameters are explicit and are part of the type of the function; such a declaration os aso
cadled a function prototype. In the old style, parameter types are not specified. Function
declaration isissued in Pars.A.8.6.3 and A.10.1.

If the function declaration in scope for a cal is old-style, then default argument promotion is
applied to each argument as follows: integral promotion (Par.A.6.1) is performed on each
argument of integral type, and each f | oat argument is converted to doubl e. The effect of the
cal is undefined if the number of arguments disagrees with the number of parameters in the
definition of the function, or if the type of an argument after promotion disagrees with that of
the corresponding parameter. Type agreement depends on whether the function's definition is
new-style or old-style. If it is old-style, then the comparison is between the promoted type of
the arguments of the call, and the promoted type of the parameter, if the definition is new-
style, the promoted type of the argument must be that of the parameter itself, without
promotion.

If the function declaration in scope for a cal is new-style, then the arguments are converted, as
if by assignment, to the types of the corresponding parameters of the function's prototype. The
number of arguments must be the same as the number of explicitly described parameters,
unless the declaration’'s parameter list ends with the dlipss notation (, ...). Inthat case, the
number of arguments must equal or exceed the number of parameters; trailing arguments
beyond the explicitly typed parameters suffer default argument promotion as described in the
preceding paragraph. If the definition of the function is old-style, then the type of each
parameter in the definition, after the definition parameter's type has undergone argument
promotion.

These rules are especially complicated because they must cater to a mixture of old- and new-style
functions. Mixtures are to be avoided if possible.

The order of evaluation of arguments is unspecified; take note that various compilers differ.
However, the arguments and the function designator are completely evaluated, including al
side effects, before the function is entered. Recursive calls to any function are permitted.

A.7.3.3 Structure References

A postfix expression followed by a dot followed by an identifier is a postfix expression. The
first operand expression must be a structure or a union, and the identifier must name a member
of the structure or union. The value is the named member of the structure or union, and its
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type is the type of the member. The expression is an Ivalue if the first expression is an lvaue,
and if the type of the second expression is not an array type.

A postfix expression followed by an arrow (built from - and >) followed by an identifier is a
postfix expression. The first operand expression must be a pointer to a structure or union, and
the identifier must name a member of the structure or union. The result refers to the named
member of the structure or union to which the pointer expression points, and the type is the
type of the member; the result is an lvalue if the typeis not an array type.

Thus the expression E1- >MOS isthe same as ( * E1) . MOS. Structures and unions are discussed in
Par.A.8.3.

In the first edition of this book, it was already the rule that a member name in such an expression had
to belong to the structure or union mentioned in the postfix expression; however, a note admitted that
this rule was not firmly enforced. Recent compilers, and ANSI, do enforceit.

A.7.3.4 Postfix Incrementation

A postfix expression followed by a++ or - - operator is a postfix expression. The value of the
expression is the value of the operand. After the value is noted, the operand is incremented ++
or decremented -- by 1. The operand must be an Ivalue, see the discussion of additive
operators (Par.A.7.7) and assgnment (Par.A.7.17) for further constraints on the operand and
details of the operation. The result is not an Ivalue.

A.7.4 Unary Operators
Expressions with unary operators group right-to-left.

unary-expression:
postfix expression
++Unary expression
- - unary expression
unary-operator cast-expression
si zeof unary-expression
si zeof (type-name)

unary operator: one of
&* + - ~ |

A.7.4.1 Prefix Incrementation Operators

A unary expression followed by a ++ or -- operator is a unary expression. The operand is
incremented ++ or decremented -- by 1. The value of the expression is the vaue after the
incrementation (decrementation). The operand must be an lvaue; see the discussion of additive
operators (Par.A.7.7) and assignment (Par.A.7.17) for further constraints on the operands and
details of the operation. The result is not an Ivalue.

A.7.4.2 Address Operator

The unary operator & takes the address of its operand. The operand must be an Ivalue referring
neither to a bit-field nor to an object declared as r egi st er, or must be of function type. The
result is a pointer to the object or function referred to by the Ivalue. If the type of the operand
is T, the type of theresult is ““pointer to T."

A.7.4.3 Indirection Operator

The unary * operator denotes indirection, and returns the object or function to which its
operand points. It is an Ivalue if the operand is a pointer to an object of arithmetic, structure,
union, or pointer type. If the type of the expression is ““pointer to T," the type of the result is T.

A.7.4.4 Unary Plus Operator
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The operand of the unary + operator must have arithmetic type, and the result is the value of
the operand. An integral operand undergoes integral promotion. The type of the result is the

type of the promoted operand.
The unary + is new with the ANSI standard. It was added for symmetry with the unary - .

A.7.4.5 Unary Minus Operator

The operand of the unary - operator must have arithmetic type, and the result is the negative
of its operand. An integral operand undergoes integral promotion. The negative of an unsigned
guantity is computed by subtracting the promoted value from the largest value of the promoted
type and adding one; but negative zero is zero. The type of the result is the type of the
promoted operand.

A.7.4.6 One's Complement Operator

The operand of the ~ operator must have integral type, and the result is the one's complement
of its operand. The integral promotions are performed. If the operand is unsigned, the result is
computed by subtracting the value from the largest value of the promoted type. If the operand
is signed, the result is computed by converting the promoted operand to the corresponding
unsigned type, applying ~, and converting back to the signed type. The type of the result is the
type of the promoted operand.

A.7.4.7 Logical Negation Oper ator

The operand of the ! operator must have arithmetic type or be a pointer, and the result is 1 if
the value of its operand compares equal to 0, and O otherwise. The type of theresultisi nt .

A.7.4.8 Sizeof Operator

The si zeof operator yields the number of bytes required to store an object of the type of its
operand. The operand is either an expression, which is not evaluated, or a parenthesized type
name. When si zeof is applied to achar, the result is 1; when applied to an array, the result is
the total number of bytes in the array. When applied to a structure or union, the result is the
number of bytes in the object, including any padding required to make the object tile an array:
the size of an array of n elements is n times the size of one element. The operator may not be
applied to an operand of function type, or of incomplete type, or to a bit-field. The result is an
unsigned integral constant; the particular type is implementation-defined. The standard header
<st ddef . h> (See appendix B) definesthistype assi ze_t .

A.7.5Casts

A unary expression preceded by the parenthesized name of a type causes conversion of the
value of the expression to the named type.
cast-expression:
unary expression
(type-name) cast-expression

This construction is called a cast. The names are described in Par.A.8.8. The effects of
conversions are described in Par.A.6. An expression with acast is not an Ivalue.

A.7.6 Multiplicative Operators
The multiplicative operators *, / , and %group left-to-right.
multiplicative-expression:
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression %cast-expression
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The operands of * and / must have arithmetic type; the operands of %omust have integral type.
The usual arithmetic conversions are performed on the operands, and predict the type of the
result.

The binary * operator denotes multiplication.

The binary / operator yields the quotient, and the % operator the remainder, of the divison of
the first operand by the second; if the second operand is O, the result is undefined. Otherwise, it
is dways true that (a/b)*b + a% is equa to a. If both operands are non-negative, then the
remainder is non-negative and smaller than the divisor, if not, it is guaranteed only that the
absolute value of the remainder is smaller than the absolute value of the divisor.

A.7.7 Additive Operators

The additive operators + and - group left-to-right. If the operands have arithmetic type, the
usual arithmetic conversions are performed. There are some additional type possibilities for
each operator.

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

The result of the + operator is the sum of the operands. A pointer to an object inan array and a
value of any integral type may be added. The latter is converted to an address offset by
multiplying it by the size of the object to which the pointer points. The sum is a pointer of the
same type as the origina pointer, and points to another object in the same array, appropriately
offset from the original object. Thus if P is a pointer to an object in an array, the expression
P+1 isa pointer to the next object in the array. If the sum pointer points outside the bounds of
the array, except at the first location beyond the high end, the result is undefined.

The provision for pointers just beyond the end of an array is new. It legitimizes a common idiom for
looping over the elements of an array.

The result of the - operator is the difference of the operands. A vaue of any integral type may
be subtracted from a pointer, and then the same conversions and conditions as for addition

apply.

If two pointers to objects of the same type are subtracted, the result is a signed integral value
representing the displacement between the pointed-to objects; pointers to successive objects
differ by 1. The type of the result is defined as pt rdi ff _t in the standard header <st ddef . h>.
The vaue is undefined unless the pointers point to objects within the same array; however, if P
points to the last member of an array, then (P+1) - P hasvaue 1.

A.7.8 Shift Operators

The shift operators << and >> group left-to-right. For both operators, each operand must be
integral, and is subject to integral the promotions. The type of the result is that of the
promoted |eft operand. The result is undefined if the right operand is negative, or greater than
or equal to the number of bitsin the left expression's type.

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

The value of E1<<E2 is E1 (interpreted as a bit pattern) left-shifted E2 bits; in the absence of
overflow, thisis equivalent to multiplication by 252, The value of E1>>E2 is E1 right-shifted E2
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bit positions. The right shift is equivaent to division by 25 if E1 is unsigned or it has a non-
negative value; otherwise the result is implementation-defined.

A.7.9 Relational Operators

The relational operators group left-to-right, but this fact is not useful; a<b<c is parsed as
(a<b) <c, and evaluates to either O or 1.

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

The operators < (less), > (greater), <= (less or equal) and >= (greater or equd) dl yied O if the
specified relation is fse and 1 if it is true. The type of the result isi nt . The usua arithmetic
conversions are performed on arithmetic operands. Pointers to objects of the same type
(ignoring any qualifiers) may be compared; the result depends on the relative locations in the
address space of the pointed-to objects. Pointer comparison is defined only for parts of the
same object; if two pointers point to the same smple object, they compare equd; if the
pointers are to members of the same structure, pointers to objects declared later in the
structure compare higher; if the pointers refer to members of an array, the comparison is
equivalent to comparison of the the corresponding subscripts. If P points to the last member of
an array, then P+1 compares higher than P, even though P+1 points outside the array.
Otherwise, pointer comparison is undefined.

These rules dlightly liberalize the restrictions stated in the first edition, by permitting comparison of

pointers to different members of a structure or union. They also legalize comparison with a pointer just
off the end of an array.

A.7.10 Equality Operators

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression ! = relational-expression

The == (equal to) and the ! = (not equal to) operators are analogous to the relational operators
except for their lower precedence. (Thus a<b == c<d is 1 whenever a<b and c<d have the
same truth-value.)

The equality operators follow the same rules as the relationa operators, but permit additional
possihilities: a pointer may be compared to a constant integral expression with vaue O, or to a
pointer to voi d. See Par.A.6.6.

A.7.11 Bitwise AND Operator

AND-expression:
equality-expression
AND-expression & equality-expression

The usual arithmetic conversions are performed; the result is the bitwise AND function of the
operands. The operator applies only to integral operands.
A.7.12 Bitwise Exclusive OR Operator

exclusive-OR-expression:
AND-expression
exclusive-OR-expression ~ AND-expression
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The usual arithmetic conversions are performed; the result is the bitwise exclusve OR function
of the operands. The operator applies only to integral operands.

A.7.13 Bitwise Inclusive OR Operator

inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

The usua arithmetic conversions are performed; the result is the bitwise inclusive OR function
of the operands. The operator applies only to integral operands.

A.7.14 L ogical AND Operator

logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

The && operator groups left-to-right. It returns 1 if both its operands compare unequal to zero,
0 otherwise. Unlike &, && guarantees left-to-right evaluation: the first operand is evaluated,
including dl side effects; if it is equal to O, the value of the expression is 0. Otherwise, the right
operand is evaluated, and if it is equal to 0, the expression's value is O, otherwise 1.

The operands need not have the same type, but each must have arithmetic type or be a pointer.
Theresultisint.

A.7.15 L ogical OR Operator

logical-OR-expression:
logical-AND-expression
logical-OR-expression | | logical-AND-expression

The || operator groups left-to-right. It returns 1 if either of its operands compare unequal to
zero, and O otherwise. Unlike |, || guarantees left-to-right evauation: the first operand is
evaluated, including al sde effects; if it is unequal to O, the value of the expression is 1.
Otherwise, the right operand is evaluated, and if it is unequal to O, the expression's value is 1,
otherwise 0.

The operands need not have the same type, but each must have arithmetic type or be a pointer.
Theresultisint.

A.7.16 Conditional Operator

conditional -expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

The first expression is evaluated, including adl side effects; if it compares unequal to O, the
result is the value of the second expression, otherwise that of the third expression. Only one of
the second and third operands is evaluated. If the second and third operands are arithmetic, the
usual arithmetic conversions are performed to bring them to a common type, and that type is
the type of the result. If both are voi d, or structures or unions of the same type, or pointers to
objects of the same type, the result has the common type. If one is a pointer and the other the
constant O, the O is converted to the pointer type, and the result has that type. If one is a
pointer to voi d and the other is another pointer, the other pointer is converted to a pointer to
voi d, and that is the type of the result.
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In the type comparison for pointers, any type qualifiers (Par.A.8.2) in the type to which the
pointer points are inggnificant, but the result type inherits qualifiers from both arms of the
conditional.

A.7.17 Assignment Expressions
There are several assignment operators; all group right-to-left.

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
= *= [= Uy += -= <<= >>= :/\:lz

All require an Ivalue as left operand, and the Ivalue must be modifiable: it must not be an array,
and must not have an incomplete type, or be a function. Also, its type must not be qudified
with const; if it is a structure or union, it must not have any member or, recursively,
submember qudified with const. The type of an assgnment expression is that of its left
operand, and the value is the value stored in the left operand after the assignment has taken
place.

In the smple assignment with =, the value of the expression replaces that of the object referred
to by the lvalue. One of the following must be true: both operands have arithmetic type, in
which case the right operand is converted to the type of the left by the assgnment; or both
operands are structures or unions of the same type; or one operand is a pointer and the other is
a pointer to void, or the left operand is a pointer and the right operand is a constant
expression with value O; or both operands are pointers to functions or objects whose types are
the same except for the possible absence of const or vol ati | e in the right operand.

An expression of the form E1 op= E2 is equivalent to E1 = E1 op (E2) except that EL is
evaluated only once.

A.7.18 Comma Operator

expression:
assignment-expression
expression, assignment-expression

A pair of expressions separated by a comma is evaluated |eft-to-right, and the value of the left
expression is discarded. The type and value of the result are the type and vaue of the right
operand. All sde effects from the evaluation of the left-operand are completed before
beginning the evaluation of the right operand. In contexts where comma is given a specia
meaning, for example in lists of function arguments (Par.A.7.3.2) and lists of initidizers
(Par.A.8.7), the required syntactic unit is an assgnment expression, so the comma operator
appears only in a parenthetical grouping, for example,

f(a, (t=3, t+2), c)
has three arguments, the second of which has the value 5.
A.7.19 Constant Expressions
Syntactically, a constant expression is an expression restricted to a subset of operators:

constant-expression:
conditional-expression
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Expressions that evaluate to a constant are required in several contexts. after case, as array
bounds and bit-field lengths, as the value of an enumeration constant, in initidizers, and in
certain preprocessor expressions.

Constant expressions may not contain assignments, increment or decrement operators, function
cdls, or comma operators; except in an operand of si zeof . If the constant expression is
required to be integral, its operands must consist of integer, enumeration, character, and
floating constants; casts must specify an integra type, and any floating constants must be cast
to integer. This necessarily rules out arrays, indirection, address-of, and structure member
operations. (However, any operand is permitted for si zeof .)

More latitude is permitted for the constant expressions of initializers; the operands may be any
type of constant, and the unary & operator may be applied to external or static objects, and to
external and static arrays subscripted with a constant expression. The unary & operator can
also be applied implicitly by appearance of unsubscripted arrays and functions. Initializers must
evaluate either to a constant or to the address of a previously declared external or static object
plus or minus a constant.

Less latitude is alowed for the integral constant expressions after #if ; si zeof expressions,
enumeration constants, and casts are not permitted. See Par.A.12.5.

A.8 Declarations

Declarations specify the interpretation given to each identifier; they do not necessarily reserve
storage associated with the identifier. Declarations that reserve storage are called definitions.
Declarations have the form

declaration:
declaration-specifiersinit-declarator-liStoy;

The declarators in the init-declarator list contain the identifiers being declared; the declaration-
specifiers consist of a sequence of type and storage class specifiers.

declaration-specifiers:
storage-class-specifier declaration-specifier Sy
type-specifier declaration-specifier S
type-qualifier declaration-specifiersoy

init-declarator-list:
init-declarator
init-declarator-list, init-declarator

init-declarator:
declarator
declarator = initializer

Declarators will be discussed later (Par.A.8.5); they contain the names being declared. A
declaration must have at least one declarator, or its type specifier must declare a structure tag,
aunion tag, or the members of an enumeration; empty declarations are not permitted.

A.8.1 Storage Class Specifiers

The storage class specifiers are:

storage-class specifier:
aut o
register
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static
extern
t ypedef

The meaning of the storage classes were discussed in Par.A.4.4.

The aut o and r egi st er specifiers give the declared objects automatic storage class, and may
be used only within functions. Such declarations also serve as definitions and cause storage to
be reserved. A regi ster declaration is equivaent to an aut o declaration, but hints that the
declared objects will be accessed frequently. Only a few objects are actualy placed into
registers, and only certain types are digible; the restrictions are implementation-dependent.
However, if an object is declared regi st er, the unary & operator may not be applied to it,
explicitly or implicitly.

The rule that it isillegal to calculate the address of an object declared r egi st er, but actually taken

to be aut o, isnew

The st ati c specifier gives the declared objects static storage class, and may be used either
ingde or outside functions. Inside a function, this specifier causes storage to be allocated, and
serves as a definition; for its effect outside a function, see Par.A.11.2.

A declaration with ext er n, used insde a function, specifies that the storage for the declared
objects is defined elsewhere; for its effects outside a function, see Par.A.11.2.

The t ypedef specifier does not reserve storage and is called a storage class specifier only for
syntactic convenience; it is discussed in Par.A.8.9.

At most one storage class specifier may be given in a declaration. If none is given, these rules
are used: objects declared insde a function are taken to be aut o; functions declared within a
function are taken to be ext er n; objects and functions declared outside a function are taken to
be st ati c, with external linkage. See Pars. A.10-A.11.

A.8.2 Type Specifiers
The type-specifiers are

type specifier:
voi d
char
short
i nt
| ong
fl oat
doubl e
si gned
unsi gned
struct-or-union-specifier
enum-specifier
typedef-name

At most one of the words | ong or short may be specified together with i nt ; the meaning is
the same if i nt is not mentioned. The word | ong may be specified together with doubl e. At
most one of si gned or unsi gned may be specified together with i nt or any of its short or
| ong varieties, or with char . Either may appear alone in which case i nt is understood. The
si gned specifier is useful for forcing char objects to carry a sign; it is permissble but
redundant with other integral types.
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Otherwise, a most one type-specifier may be given in a declaration. If the type-specifier is
missing from a declaration, it istakento bei nt .

Types may aso be qualified, to indicate special properties of the objects being declared.

type-qualifier:
const
vol atile

Type qudifiers may appear with any type specifier. A const object may be initidized, but not
thereafter assigned to. There are no implementation-dependent semantics for vol atil e
objects.
The const and vol ati | e properties are new with the ANSI standard. The purpose of const isto
announce objects that may be placed in read-only memory, and perhaps to increase opportunities for
optimization. The purpose of vol at i | e isto force an implementation to suppress optimization that
could otherwise occur. For example, for a machine with memory-mapped input/output, a pointer to a
device register might be declared as a pointer to vol ati | e, in order to prevent the compiler from

removing apparently redundant references through the pointer. Except that it should diagnose explicit
attempts to change const objects, a compiler may ignore these qualifiers.

A.8.3 Structure and Union Declar ations

A structure is an object consisting of a sequence of named members of various types. A union
is an object that contains, at different times, any of several members of various types. Structure
and union specifiers have the same form.

struct-or-union-specifier:
struct-or-union identifier,,{ struct-declaration-list }
struct-or-union identifier

struct-or-union:
struct
uni on

A struct-declaration-list is a sequence of declarations for the members of the structure or
union:

struct-declaration-list:
struct declaration
struct-declaration-list struct declaration

struct-declaration: specifier-qualifier-list struct-declarator-list;

specifier-qualifier-list:
type-specifier specifier-qualifier-listoy
type-qualifier specifier-qualifier-listop

struct-declarator-list:
struct-declarator
struct-declarator-list, struct-declarator

Usudly, a struct-declarator is just a declarator for a member of a structure or union. A
structure member may also consist of a specified number of bits. Such a member is dso called
abit-field; itslength is set off from the declarator for the field name by a colon.

struct-declarator:
declarator ~ declarator,, : constant-expression
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A type specifier of the form

struct-or-union identifier { struct-declaration-list }

declares the identifier to be the tag of the structure or union specified by the list. A subsequent
declaration in the same or an inner scope may refer to the same type by using the tag in a
specifier without the list:

struct-or-union identifier

If a specifier with atag but without a list appears when the tag is not declared, an incomplete
type is specified. Objects with an incomplete structure or union type may be mentioned in
contexts where their size is not needed, for example in declarations (not definitions), for
gpecifying a pointer, or for creating at ypedef , but not otherwise. The type becomes complete
on occurrence of a subsequent specifier with that tag, and containing a declaration list. Evenin
specifiers with a ligt, the structure or union type being declared is incomplete within the i,
and becomes complete only at the} terminating the specifier.

A structure may not contain a member of incomplete type. Therefore, it is impossible to
declare a structure or union containing an instance of itself. However, besides giving a name to
the structure or union type, tags alow definition of self-referential structures; a structure or
union may contain a pointer to an instance of itsalf, because pointers to incomplete types may
be declared.

A very specia rule appliesto declarations of the form
struct-or-union identifier;

that declare a structure or union, but have no declaration list and no declarators. Even if the
identifier is a structure or union tag aready declared in an outer scope (Par.A.11.1), this
declaration makes the identifier the tag of a new, incompletely-typed structure or union in the
current scope.

This recondite is new with ANSI. It isintended to deal with mutually-recursive structures declared in
an inner scope, but whose tags might already be declared in the outer scope.

A structure or union specifier with a ligt but no tag creates a unique type; it can be referred to
directly only in the declaration of which it is a part.

The names of members and tags do not conflict with each other or with ordinary variables. A
member name may not appear twice in the same structure or union, but the same member name
may be used in different structures or unions.

In the first edition of this book, the names of structure and union members were not associated with
their parent. However, this association became common in compilers well before the ANSI standard.

A non-field member of a structure or union may have any object type. A fiedd member (which
need not have a declarator and thus may be unnamed) hastypei nt, unsi gned i nt, or si gned
i nt, and is interpreted as an object of integral type of the specified length in bits; whether an
int fied is treated as signed is implementation-dependent. Adjacent fiddld members of
structures are packed into implementation-dependent storage units in an implementation-
dependent direction. When a fidd following another fied will not fit into a partialy-filled
storage unit, it may be split between units, or the unit may be padded. An unnamed field with
width O forces this padding, so that the next field will begin at the edge of the next allocation
unit.

The ANSI standard makes fields even more implementation-dependent than did the first edition. It is

advisable to read the language rules for storing bit-fields as ““implementation-dependent” without

qualification. Structures with bit-fields may be used as a portable way of attempting to reduce the
storage required for a structure (with the probable cost of increasing the instruction space, and time,
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needed to access the fields), or as a non-portable way to describe a storage layout known at the bit-
level. In the second case, it is necessary to understand the rules of the local implementation.

The members of a structure have addresses increasing in the order of their declarations. A non-
fiedld member of a structure is aigned a an addressing boundary depending on its type;
therefore, there may be unnamed holes in a structure. If a pointer to a structure is cast to the
type of apointer to its first member, the result refers to the first member.

A union may be thought of as a structure dl of whose members begin at offset O and whose
Sze is sufficient to contain any of its members. At most one of the members can be stored in a
union a any time. If apointr to a union is cast to the type of a pointer to a member, the result
refersto that member.

A simple example of astructure declaration is

struct tnode {
char tword[ 20];
int count;
struct tnode *left;
struct tnode *right;

}
which contains an array of 20 characters, an integer, and two pointers to smilar structures.
Once this declaration has bene given, the declaration

struct tnode s, *sp;
declares s to be a structure of the given sort, and sp to be a pointer to a structure of the given
sort. With these declarations, the expression

Sp- >count
refersto the count field of the structure to which sp points;

s.left
refers to the left subtree pointer of the structure s, and

s. ri ght->tword[ 0]
refersto the first character of the t wor d member of the right subtree of s.

In general, a member of a union may not be inspected unless the vaue of the union has been
assigned using the same member. However, one special guarantee smplifies the use of unions:
if a union contains severa structures that share a common initial sequence, and the union
currently contains one of these structures, it is permitted to refer to the common initia part of
any of the contained structures. For example, the following is alegal fragment:

uni on {
struct {
int type;
}on;
struct {
int type;
i nt intnode;
}oni;
struct {
int type;
fl oat fl oatnode;
} nf;
}ou

u.nf.type = FLOAT;
u. nf.fl oat node = 3. 14;

|f (u.n.type == FLQOAT)
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si n(u. nf. fl oat node)

A.8.4 Enumerations

Enumerations are unique types with values ranging over a set of named constants called
enumerators. The form of an enumeration specifier borrows from that of structures and unions.

enum-specifier:
enumidentifieryy { enumerator-list }
enumidentifier

enumer ator-list:
enumer ator
enumerator-list, enumerator

enumerator:
identifier
identifier = constant-expression

The identifiers in an enumerator list are declared as constants of type i nt, and may appear
wherever constants are required. If no enumerations with = appear, then the values of the
corresponding constants begin a 0 and increase by 1 as the declaration is read from left to
right. An enumerator with = gives the associated identifier the value specified; subsequent
identifiers continue the progression from the assigned vaue.

Enumerator names in the same scope must al be distinct from each other and from ordinary
variable names, but the values need not be distinct.

The role of the identifier in the enum-specifier is analogous to that of the structure tag in a
struct-specifier; it names a particular enumeration. The rules for enum-specifiers with and
without tags and lists are the same as those for structure or union specifiers, except that
incomplete enumeration types do not exist; the tag of an enum-specifier without an enumerator
list must refer to an in-scope specifier with alist.

Enumerations are new since the first edition of this book, but have been part of the language for some
years.

A.8.5 Declarators
Declarators have the syntax:

declarator:
pointer: direct-declarator

direct-declarator:
identifier
( declarator)
direct-declarator [ constant-expressi Ongp: ]
direct-declarator ( parameter-type-list)
direct-declarator ( identifier-listoy )

pointer:
* type-qualifier-listop
* type-qualifier-listo, pointer

type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier
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The structure of declarators resembles that of indirection, function, and array expressions, the
grouping is the same.

A.8.6 Meaning of Declarators

A lig of declarators appears after a sequence of type and storage class specifiers. Each
declarator declares a unique main identifier, the one that appears as the first dternative of the
production for direct-declarator. The storage class specifiers apply directly to this identifier,
but its type depends on the form of its declarator. A declarator is read as an assertion that
when its identifier appears in an expression of the same form as the declarator, it yields an
object of the specified type.

Considering only the type parts of the declaration specifiers (Par. A.8.2) and a particular
declarator, a declaration has the form T D," where T is atype and D is a declarator. The type

attributed to the identifier in the various forms of declarator is described inductively using this
notation.

In adeclaration T D where Dis an unadored identifier, the type of the identifier isT.

In adeclaration T D where D has the form

( D1)
then the type of the identifier in D1 is the same as that of D. The parentheses do not ater the
type, but may change the binding of complex declarators.

A.8.6.1 Pointer Declarators
In adeclaration T D where D has the form
* type-qualifier-listo, D1

and the type of the identifier in the declaration T D1 is type-modifier T," the type of the
identifier of Dis "type-modifier type-qualifier-list pointer to T." Qudifiers following * apply to
pointer itself, rather than to the object to which the pointer points.

For example, consider the declaration

int *ap[];
Here, ap[] plays the role of D1; a declaration i nt ap[]" (below) would give ap the type
“array of int," the type-qudifier ligt is empty, and the type-modifier is ““array of." Hence the
actual declaration gives ap the type array to pointerstoi nt ."

As other examples, the declarations

int i, *pi, *const cpi = &;

const int ci = 3, *pci;
declare an integer i and a pointer to an integer pi . The value of the constant pointer cpi may
not be changed; it will aways point to the same location, athough the value to which it refers
may be altered. The integer ci is constant, and may not be changed (though it may be
initialized, as here.) The type of pci is "pointer to const int," and pci itself may be changed
to point to another place, but the value to which it points may not be altered by assigning
through pci .

A.8.6.2 Array Declarators
In adeclaration T D where D has the form
D1 [ constant-express 0Nyl
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and the type of the identifier in the declaration T D1 is type-modifier T," the type of the
identifier of Dis ““type-modifier array of T." If the constant-expression is present, it must have
integral type, and vaue greater than 0. If the constant expression specifying the bound is
missing, the array has an incomplete type.

An array may be constructed from an arithmetic type, from a pointer, from a structure or
union, or from another array (to generate a multi-dimensional array). Any type from which an
array is constructed must be complete; it must not be an array of structure of incomplete type.
This implies that for a multi-dimensiona array, only the first dimenson may be missng. The
type of an object of incomplete aray type is completed by another, complete, declaration for
the object (Par.A.10.2), or by initidizing it (Par.A.8.7). For example,

float fa[l1l7], *afp[l7];
declaresan array of f | oat numbers and an array of pointersto f | oat numbers. Also,

static int x3d[3][5][7];
declares a static three-dimensiona array of integers, with rank 3 X 5 X 7. In complete detail,
x3d isan array of three items. each item is an array of five arrays; each of the latter arraysisan

array of seven integers. Any of the expressions x3d, x3d[i], x3d[i][j],x3d[i][j][k] may
reasonably appear in an expression. The first three have type “array,”, the last has type i nt .
More specificaly, x3d[i][j] isan array of 7 integers, and x3d[i] isan array of 5 arrays of 7
integers.

The array subscripting operation is defined so that E1[ E2] isidentical to * ( E1+E2) . Therefore,
despite its asymmetric appearance, subscripting is a commutative operation. Because of the
conversion rules that apply to + and to arrays (Pars.A6.6, A.7.1, A.7.7), if E1 is an array and
E2 aninteger, then E1[ E2] refersto the E2-th member of E1.

In the example, x3d[i][j][k] isequivdent to *(x3d[i][j] + k). The first subexpression
x3d[i][j] isconverted by Par.A.7.1 to type ““pointer to array of integers,” by Par.A.7.7, the

addition involves multiplication by the size of an integer. It follows from the rules that arrays
are stored by rows (last subscript varies fastest) and that the first subscript in the declaration
helps determine the amount of storage consumed by an array, but plays no other part in
subscript calculations.

A.8.6.3 Function Declarators
In a new-style function declaration T D where D has the form
D1 (parameter-type-list)

and the type of the identifier in the declaration T D1 is ~type-modifier T," the type of the
identifier of Dis type-modifier function with arguments parameter-type-list returning 1."

The syntax of the parametersis

parameter -type-list:
parameter-list
parameter-list ,

parameter-list:
parameter-declaration
parameter-list, parameter-declaration

parameter-declaration:
declaration-specifiers declarator
declaration-specifiers abstract-declarator oy
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In the new-style declaration, the parameter list specifies the types of the parameters. As a
specia case, the declarator for a new-style function with no parameters has a parameter list
consisting soley of the keyword voi d. If the parameter list ends with an dlipsis ™, ..." then
the function may accept more arguments than the number of parameters explicitly described,
see Par.A.7.3.2.

The types of parameters that are arrays or functions are altered to pointers, in accordance with
the rules for parameter conversions; see Par.A.10.1. The only storage class specifier permitted
in a parameter's declaration is regi ster, and this specifier is ignored unless the function
declarator heads a function definition. Smilarly, if the declarators in the parameter declarations
contain identifiers and the function declarator does not head a function definition, the
identifiers go out of scope immediately. Abstract declarators, which do not mention the
identifiers, are discussed in Par.A.8.8.

In an old-style function declaration T D where D has the form
D1 (identifier-listopy)

and the type of the identifier in the declaration T D1 is type-modifier T," the type of the
identifier of D is “type-modifier function of unspecified arguments returning T." The
parameters (if present) have the form

identifier-list:
identifier
identifier-list, identifier

In the old-style declarator, the identifier lis must be absent unless the declarator is used in the
head of a function definition (Par.A.10.1). No information about the types of the parametersis
supplied by the declaration.

For example, the declaration

int £(), *fpi(), (*pfi)();
declares afunction f returning an integer, afunction f pi returning a pointer to an integer, and
a pointer pfi to a function returning an integer. In none of these are the parameter types
specified; they are old-style.

In the new-style declaration

int strcpy(char *dest, const char *source), rand(void);
strcpy isafunction returning i nt, with two arguments, the first a character pointer, and the
second a pointer to constant characters. The parameter names are effectively comments. The
second function r and takes no arguments and returnsi nt .
Function declarators with parameter prototypes are, by far, the most important language change
introduced by the ANSI standard. They offer an advantage over the “"old-style" declarators of the first
edition by providing error-detection and coercion of arguments across function calls, but at a cost:
turmoil and confusion during their introduction, and the necessity of accomodating both forms. Some
syntactic ugliness was required for the sake of compatibility, namely voi d as an explicit marker of
new-style functions without parameters.

The elipsis notation ™, ... " for variadic functionsis also new, and, together with the macros in the
standard header <st dar g. h>, formalizes a mechanism that was officially forbidden but unofficially
condoned in the first edition.

These notations were adapted from the C++ language.

A.8.7 Initialization
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When an object is declared, its init-declarator may specify an initid vaue for the identifier
being declared. The initializer is preceded by =, and is either an expression, or a list of
initializers nested in braces. A list may end with a comma, a nicety for neat formatting.

initializer:

assignment-expression

{ initializer-list }

{ initializer-list, }

initializer-list:
initializer
initializer-list , initializer

All the expressions in the initiaizer for a static object or array must be constant expressions as
described in Par.A.7.19. The expressions in the initializer for an aut o or regi st er object or
array must likewise be constant expressions if the initializer is a brace-enclosed list. However,
if the initidlizer for an automatic object is a sngle expression, it need not be a constant
expression, but must merely have appropriate type for assignment to the object.
The first edition did not countenance initialization of automatic structures, unions, or arrays. The
ANSI standard alowsit, but only by constant constructions unless theinitializer can be expressed by a
simple expression.
A static object not explicitly initidized isinitidized as if it (or its members) were assigned the
constant 0. The initial value of an automatic object not explicitly intialized is undefined.

The initializer for a pointer or an object of arithmetic type is a single expression, perhaps in
braces. The expression is assigned to the object.

The initializer for a structure is either an expression of the same type, or a brace-enclosed list
of initializers for its members in order. Unnamed bit-field members are ignored, and are not
initialized. If there are fewer initidizers in the list than members of the structure, the trailing
members are initidized with 0. There may not be more initializers than members. Unnamed bit-
field members are ignored,and are not initialized.

The initializer for an array is a brace-enclosed list of initializers for its members. If the array has
unknown size, the number of initializers determines the size of the array, and its type becomes
complete. If the array has fixed size, the number of initializers may not exceed the number of
members of the array; if there are fewer, the trailing members are initialized with O.

As a special case, a character array may be initialized by a string literal; successive characters
of the string initidlize successve members of the array. Smilarly, a wide character literd
(Par.A.2.6) may initidlize an array of typewchar _t . If the array has unknown size, the number
of characters in the string, including the terminating null character, determines its size; if its
sze isfixed, the number of characters in the string, not counting the terminating null character,
must not exceed the size of the array.

The initidlizer for a union is either a single expression of the same type, or a brace-enclosed
initidizer for the first member of the union.
The first edition did not allow initialization of unions. The ““first-member" rule is clumsy, but is hard

to generalize without new syntax. Besides allowing unions to be explicitly initialized in at least a
primitive way, this ANSI rule makes definite the semantics of static unions not explicitly initialized.

An aggregate is a structure or array. If an aggregate contains members of aggregate type, the
initialization rules apply recursively. Braces may be elided in the initialization as follows: if the
initidizer for an aggregate's member that itself is an aggregate begins with a left brace, then the
succeding comma-separated list of initidizers initializes the members of the subaggregate; it is
erroneous for there to be more initializers than members. If, however, the initidizer for a
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subaggregate does not begin with a left brace, then only enough eements from the list are
taken into account for the members of the subaggregate; any remaining members are left to
initialize the next member of the aggregate of which the subaggregate is a part.

For example,

int x[] ={ 1, 3, 5};
declares and initidizes x as a 1-dimensiona array with three members, since no size was
specified and there are three initializers.

float y[4][3] = {
{1, 3, 51},
{ 2, 4, 61},
{3, 5 71},
b

is a completely-bracketed initiaization: 1, 3 and 5 initidize the first row of the array y[ 0],
namely y[ 0] [ 0], y[O][1], andy[ 0] [ 2] . Likewise the next two linesinitidizey[ 1] and y[ 2] .
The initidizer ends early, and therefore the elements of y[ 3] are initidized with 0. Precisely
the same effect could have been achieved by

float y[4][3] = {
1, 3, 5, 2, 4, 6, 3, 5 7
}

The ,initializer for y begins with a left brace, but that for y[ 0] does not; therefore three
elements from the list are used. Likewise the next three are taken successively for y[ 1] and for
y[ 2] . Also
float y[4][3] = {
{1}y {2}, {3} {4}

initiaiizes the first column of y (regarded as a two-dimensional array) and leaves the rest O.
Findly,

char mseg[] = "Syntax error on line %\n";
shows a character array whose members are initidlized with a string; its size includes the
terminating null character.

A.8.8 Type names

In severa contexts (to specify type conversions explicitly with a cast, to declare parameter
types in function declarators, and as argument of si zeof ) it is necessary to supply the name of
a data type. Thisis accomplished usng atype name, which is syntacticaly a declaration for an
object of that type omitting the name of the object.

type-name:
specifier-qualifier-list abstract-declarator o

abstract-declarator:
pointer
pointer . direct-abstract-declarator

direct-abstract-declarator:
( abstract-declarator )
direct-abstract-declarator o [ constant-expressi Ongpy]
direct-abstract-declarator . (parameter-type-listop)
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It is possible to identify uniquely the location in the abstract-declarator where the identifier
would appear if the construction were a declarator in a declaration. The named type is then the
same as the type of the hypothetical identifier. For example,

i nt
int *

int *[3]
int (*)[]
int *()

int (*[1)(void)

name respectively the types ““integer,” ““pointer to integer," “array of 3 pointers to integers,"
“pointer to an unspecified number of integers,” ““function of unspecified parameters returning
pointer to integer,” and ““array, of unspecified size, of pointers to functions with no parameters
each returning an integer."

A.8.9 Typedef

Declarations whose storage class specifier is t ypedef do not declare objects; instead they
define identifiers that name types. These identifiers are called typedef names.

typedef-name:
identifier

A typedef declaration attributes a type to each name among its declarators in the usual way
(see Par.A.8.6). Thereafter, each such typedef name is syntactically equivalent to a type
specifier keyword for the associated type.

For example, after

typedef |ong Bl ockno, *Bl ockptr;
typedef struct { double r, theta; } Conplex;

the constructions

Bl ockno b;

extern Bl ockptr bp;

Conpl ex z, *zp;
are legd declarations. The type of b is| ong, that of bp is ~“pointer to | ong," and that of z is
the specified structure; zp is a pointer to such a structure.

t ypedef does not introduce new types, only synonyms for types that could be specified in
another way. In the example, b has the same type asany | ong object.

Typedef names may be redeclared in an inner scope, but a non-empty set of type specifiers
must be given. For example,

extern Bl ockno;
does not redeclare Bl ockno, but

extern int Bl ockno;
does.

A.8.10 Type Equivalence

Two type specifier lists are equivalent if they contain the same set of type specifiers, taking
into account that some specifiers can be implied by others (for example, | ong aone implies
| ong int). Structures, unions, and enumerations with different tags are distinct, and a tagless
union, structure, or enumeration specifies a unique type.
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Two types are the same if their abstract declarators (Par.A.8.8), after expanding any t ypedef
types, and deleting any function parameter specifiers, are the same up to the equivalence of
type specifier lists. Array sizes and function parameter types are significant.

A.9 Statements

Except as described, statements are executed in sequence. Statements are executed for their
effect, and do not have values. They fall into several groups.

Statement:
|abel ed-statement
expression-statement
compound-statement
sel ection-statement
iteration-statement
jump-statement

A.9.1 Labeled Statements
Statements may carry label prefixes.

|abel ed-statement:
identifier : statement
case constant-expression : statement
def aul t : statement

A labd consisting of an identifier declares the identifier. The only use of an identifier label is as
a target of got 0. The scope of the identifier is the current function. Because labels have their
own name space, they do not interfere with other identifiers and cannot be redeclared. See
Par.A.11.1.

Case labels and default labels are used with the swi t ch statement (Par.A.9.4). The constant
expression of case must have integral type.

Labels themsalves do not ater the flow of control.

A.9.2 Expression Statement
Most statements are expression statements, which have the form

expression-statement:
expr essi ONgy;

Most expression statements are assignments or function cals. All side effects from the
expression are completed before the next statement is executed. If the expression is missing,
the construction is caled a null statement; it is often used to supply an empty body to an
iteration statement to place alabel.

A.9.3 Compound Statement

So that several statements can be used where one is expected, the compound statement (also
caled “"block") is provided. The body of afunction definition is a compound statement.

compound-statement:
{ declaration-listoy statement-listqy }

declaration-list:
declaration
declaration-list declaration
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statement-list:
statement
Statement-list statement

If an identifier in the declaration-list was in scope outside the block, the outer declaration is
suspended within the block (see Par.A.11.1), after which it resumes its force. An identifier may
be declared only once in the same block. These rules apply to identifiers in the same name
gpace (Par.A.11); identifiers in different name spaces are treated as distinct.

Initialization of automatic objects is performed each time the block is entered at the top, and
proceeds in the order of the declarators. If a jump into the block is executed, these
initiaizations are not performed. Initidization of static objects are performed only once,
before the program begins execution.

A.9.4 Selection Statements
Selection statements choose one of severa flows of control.

sel ection-statement:
i f (expression) statement
i f (expression) statement el se statement
swi t ch (expression) statement

In both forms of thei f statement, the expression, which must have arithmetic or pointer type,
is evaluated, including dl side effects, and if it compares unequal to 0, the first substatement is
executed. In the second form, the second substatement is executed if the expression is 0. The
el se ambiguity is resolved by connecting an el se with the last encountered el se-lessi f a
the same block nesting level.

The swi t ch statement causes control to be transferred to one of several statements depending
on the value of an expression, which must have integral type. The substatement controlled by a
swi t ch istypicaly compound. Any statement within the substatement may be labeled with one
or more case labels (Par.A.9.1). The controlling expression undergoes integral promotion
(Par.A.6.1), and the case constants are converted to the promoted type. No two of these case
constants associated with the same switch may have the same value after conversion. There
may also be a most one def aul t label associated with a switch. Switches may be nested; a
case oOr def aul t label is associated with the smallest switch that containsit.

When the swi t ch statement is executed, its expression is evaluated, including al side effects,
and compared with each case constant. If one of the case constants is equal to the vaue of the
expression, control passes to the statement of the matched case labd. If no case constant
matches the expression, and if thereisadef aul t label, control passes to the labeled statement.
If no case matches, and if there is no def aul t , then none of the substatements of the swtich is
executed.

In the first edition of this book, the controlling expression of swi t ch, and the case constants, were
required to have i nt type.

A.9.5 lteration Statements
Iteration statements specify looping.

iteration-statement:
whi | e (expression) statement
do statement whi | e (expression);
for (EXPression; expressiong; EXpression) statement
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In the whi | e and do statements, the substatement is executed repeatedly so long as the value
of the expression remains unequal to O; the expression must have arithmetic or pointer type.
With whi | e, the test, including al sde effects from the expression, occurs before each
execution of the statement; with do, the test follows each iteration.

In the f or statement, the first expression is evaluated once, and thus specifies initiaization for
the loop. There is no restriction on its type. The second expression must have arithmetic or
pointer type; it is evauated before each iteration, and if it becomes equal to O, the for is
terminated. The third expression is evaluated after each iteration, and thus specifies a re-
initialization for the loop. There is no restriction on its type. Side-effects from each expression
are completed immediately after its evaluation. If the substatement does not contain cont i nue,
a statement

for (expressionl; expression2; expression3) statement
isequivalent to

expr essi onl;

whi | e (expression2) {
st at enent
expr essi on3;

}
Any of the three expressions may be dropped. A missing second expression makes the implied

test equivalent to testing a non-zero element.

A.9.6 Jump statements
Jump statements transfer control unconditionally.

jump-statement:
got o identifier;
conti nue;
br eak;
ret urn expressiOngy;

In the got o statement, the identifier must be a label (Par.A.9.1) located in the current function.
Control transfers to the labeled statement.

A conti nue statement may appear only within an iteration statement. It causes control to pass
to the loop-continuation portion of the smalest enclosing such statement. More precisely,
within each of the statements

while (...) { do { for (...) {
co.nii-n: X co.n;cin: iy coh;cin:
} } while (...): }

acont i nue not contained in a smaller iteration statement is the same asgot o cont i n.

A break statement may appear only in an iteration statement or a swi tch statement, and
terminates execution of the smallest enclosing such statement; control passes to the statement
following the terminated statement.

A function returns to its caler by the return statement. When return is followed by an
expression, the vaue is returned to the caller of the function. The expression is converted, as
by assignment, to the type returned by the function in which it appears.

Flowing off the end of a function is equivalent to a return with no expression. In either case,
the returned value is undefined.
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A.10 External Declarations

The unit of input provided to the C compiler is caled a trandation unit; it consists of a
sequence of external declarations, which are either declarations or function definitions.

translation-unit:
external-declaration
trand ation-unit external-declaration

external-declaration:
function-definition
declaration

The scope of externa declarations persists to the end of the trandation unit in which they are
declared, just as the effect of declarations within the blocks persists to the end of the block.
The syntax of external declarations is the same as that of dl declarations, except that only at
this level may the code for functions be given.

A.10.1 Function Definitions
Function definitions have the form

function-definition:
declaration-specifier s, declarator declaration-list,,: compound-statement

The only storage-class specifiers alowed among the declaration specifiers are extern or
static; see Par.A.11.2 for the distinction between them.

A function may return an arithmetic type, a structure, a union, a pointer, or voi d, but not a
function or an array. The declarator in a function declaration must specify explicitly that the
declared identifier has function type; that is, it must contain one of the forms (see Par.A.8.6.3).

direct-declarator ( parameter-type-list)
direct-declarator ( identifier-listoy )

where the direct-declarator is an identifier or a parenthesized identifier. In particular, it must
not achieve function type by means of at ypedef .

In the first form, the definition is a new-style function, and its parameters, together with their
types, are declared in its parameter type list; the declaration-list following the function's
declarator must be absent. Unless the parameter type list consists solely of voi d, showing that
the function takes no parameters, each declarator in the parameter type lis must contain an
identifier. If the parameter type lig ends with *°, ... " then the function may be called with
more arguments than parameters; the va_ar g macro mechanism defined in the standard header
<stdarg. h> and described in Appendix B must be used to refer to the extra arguments.
Variadic functions must have at least one named parameter.

In the second form, the definition is old-style: the identifier list names the parameters, while the
declaration ligt attributes types to them. If no declaration is given for a parameter, its type is
taken to be int. The declaration lig must declare only parameters named in the li,
initialization is not permitted, and the only storage-class specifier possibleisregi ster.

In both styles of function definition, the parameters are understood to be declared just after the
beginning of the compound statement constituting the function's body, and thus the same
identifiers must not be redeclared there (although they may, like other identifiers, be redeclared
in inner blocks). If a parameter is declared to have type “array of type," the declaration is
adjusted to read ““pointer to type;" amilarly, if a parameter is declared to have type ~“function
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returning type," the declaration is adjusted to read pointer to function returning type." During
the cal to a function, the arguments are converted as necessary and assigned to the
parameters; see Par.A.7.3.2.
New-style function definitions are new with the ANSI standard. There is also a small change in the
details of promotion; the first edition specified that the declarations of f| oat parameters were

adjusted to read doubl e. The difference becomes noticable when a pointer to a parameter is
generated within a function.

A complete example of a new-style function definition is

int max(int a, int b, int c)
{
int m
m=(a>Db) ?a: b;
return (m>c¢) ? m: c;
}
Herei nt isthe declaration specifier; max(int a, int b, int c) isthefunction'sdeclarator,
and { ... } is the block giving the code for the function. The corresponding old-style
definition would be

int max(a, b, c)
int a, b, c;

{

}
wherenow int max(a, b, c) isthedeclarator, andint a, b, c; isthedeclaration lig for
the parameters.

A.10.2 External Declarations

External declarations specify the characteristics of objects, functions and other identifiers. The
term “externa" refers to their location outside functions, and is not directly connected with the
ext ern keyword; the storage class for an externally-declared object may be left empty, or it
may be specified asext ern or stati c.

Severa external declarations for the same identifier may exist within the same trandation unit if
they agree in type and linkage, and if thereis at most one definition for the identifier.

[* ... %

Two declarations for an object or function are deemed to agree in type under the rule
discussed in Par.A.8.10. In addition, if the declarations differ because one type is an incomplete
structure, union, or enumeration type (Par.A.8.3) and the other is the corresponding completed
type with the same tag, the types are taken to agree. Moreover, if one type is an incomplete
array type (Par.A.8.6.2) and the other is a completed array type, the types, if otherwise
identical, are dso taken to agree. Findly, if one type specifies an old-style function, and the
other an otherwise identica new-style function, with parameter declarations, the types are
taken to agree.

If the first external declarator for a function or object includes the static specifier, the
identifier has internal linkage; otherwise it has external linkage. Linkage is discussed in
Par.11.2.

An external declaration for an object is a definition if it has an initidlizer. An external object
declaration that does not have an initializer, and does not contain the ext er n specifier, is a
tentative definition. If a definition for an object appears in a trandation unit, any tentative
definitions are treated merely as redundant declarations. If no definition for the object appears
in the trandation unit, all its tentative definitions become a single definition with initializer 0.
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Each object must have exactly one definition. For objects with internal linkage, this rule applies

separately to each trandation unit, because internally-linked objects are unique to a translation

unit. For objects with external linkage, it applies to the entire program.
Although the one-definition rule is formulated somewhat differently in the first edition of this book, it
is in effect identical to the one stated here. Some implementations relax it by generalizing the notion
of tentative definition. In the alternate formulation, which is usual in UNIX systems and recognized as
a common extension by the Standard, all the tentative definitions for an externally linked object,
throughout al the trandation units of the program, are considered together instead of in each
trandation unit separately. If a definition occurs somewhere in the program, then the tentative
definitions become merely declarations, but if no definition appears, then all its tentative definitions
become a definition with initializer O.

A.11 Scope and Linkage

A program need not dl be compiled a one time: the source text may be kept in severa files
containing trandation units, and precompiled routines may be loaded from libraries.
Communication among the functions of a program may be carried out both through cdls and
through manipulation of external data

Therefore, there are two kinds of scope to consider: first, the lexical scope of an identifier
which is the region of the program text within which the identifier's characteristics are
understood; and second, the scope associated with objects and functions with external linkage,
which determines the connections between identifiers in separately compiled trandation units.

A.11.1 Lexical Scope

Identifiers fal into severa name spaces that do not interfere with one another; the same
identifier may be used for different purposes, even in the same scope, if the uses are in different
name spaces. These classes are: objects, functions, typedef names, and enum constants; labels;
tags of structures or unions, and enumerations, and members of each structure or union
individualy.
These rules differ in several ways from those described in the first edition of this manual. Labels did
not previoudly have their own name space; tags of structures and unions each had a separate space,
and in some implementations enumerations tags did as well; putting different kinds of tags into the
same space is a new restriction. The most important departure from the first edition is that each
structure or union creates a separate name space for its members, so that the same name may appear in
several different structures. This rule has been common practice for several years.

The lexica scope of an object or function identifier in an external declaration begins at the end
of its declarator and persists to the end of the trandlation unit in which it appears. The scope of
a parameter of a function definition begins at the start of the block defining the function, and
persists through the function; the scope of a parameter in a function declaration ends at the end
of the declarator. The scope of an identifier declared a the head of ablock begins a the end of
its declarator, and persists to the end of the block. The scope of a label is the whole of the
function in which it appears. The scope of a structure, union, or enumeration tag, or an
enumeration constant, begins at its appearance in a type specifier, and persists to the end of a
trandation unit (for declarations a the external level) or to the end of the block (for
declarations within a function).

If an identifier is explicitly declared at the head of a block, including the block constituting a
function, any declaration of the identifier outside the block is suspended until the end of the
block.

A.11.2 Linkage

Within a trandation unit, al declarations of the same object or function identifier with internal
linkage refer to the same thing, and the object or function is unique to that trandation unit. All
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declarations for the same object or function identifier with external linkage refer to the same
thing, and the object or function is shared by the entire program.

As discussed in Par.A.10.2, the first external declaration for an identifier gives the identifier
internal linkage if the st ati ¢ specifier is used, externa linkage otherwise. If a declaration for
an identifier within a block does not include the ext er n specifier, then the identifier has no
linkage and is unique to the function. If it does include ext er n, and an external declaration for
is active in the scope surrounding the block, then the identifier has the same linkage as the
external declaration, and refers to the same object or function; but if no external declaration is
visible, itslinkage is external.

A.12 Preprocessing

A preprocessor performs macro substitution, conditional compilation, and incluson of named
files. Lines beginning with #, perhaps preceded by white space, communicate with this
preprocessor. The syntax of these lines is independent of the rest of the language; they may
appear anywhere and have effect that lasts (independent of scope) until the end of the
trandation unit. Line boundaries are significant; each line is analyzed individually (bus see
Par.A.12.2 for how to adjoin lines). To the preprocessor, a token is any language token, or a
character sequence giving a file name as in the #i ncl ude directive (Par.A.12.4); in addition,
any character not otherwise defined is taken as a token. However, the effect of white spaces
other than space and horizontal tab is undefined within preprocessor lines.

Preprocessing itself takes place in severa logicaly successive phases that may, in a particular
implementation, be condensed.

1. First, trigraph sequences as described in Par.A.12.1 are replaced by their equivalents.
Should the operating system environment require it, newline characters are introduced
between the lines of the sourcefile.

2. Each occurrence of a backdash character \ followed by a newline is deleted, this
gplicing lines (Par.A.12.2).

3. The program is split into tokens separated by white-space characters, comments are
replaced by a single space. Then preprocessing directives are obeyed, and macros
(Pars.A.12.3-A.12.10) are expanded.

4. Escape sequences in character constants and string literals (Pars. A.2.5.2, A.2.6) are
replaced by their equivalents; then adjacent string literals are concatenated.

5. The resault is trandated, then linked together with other programs and libraries, by
collecting the necessary programs and data, and connecting externa functions and
object references to their definitions.

A.12.1 Trigraph Sequences

The character set of C source programs is contained within seven-bit ASCII, but is a superset
of the 1SO 646-1983 Invariant Code Set. In order to enable programs to be represented in the
reduced set, dl occurrences of the following trigraph sequences are replaced by the
corresponding single character. This replacement occurs before any other processing.

27= # 22( | 27< |
22/ \ 27) ] 27>}

?2?' A 2?20 | ?2?2- -
No other such replacements occur.
Trigraph sequences are new with the ANS| standard.

A.12.2 Line Splicing
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Lines that end with the backdash character \ are folded by deleting the backdash and the
following newline character. This occurs before division into tokens.

A.12.3 Macro Definition and Expansion
A control line of the form
# defi ne identifier token-sequence

causes the preprocessor to replace subsequent instances of the identifier with the given
sequence of tokens; leading and trailing white space around the token sequence is discarded. A
second #define for the same identifier is erroneous unless the second token sequence is
identical to the first, where al white space separations are taken to be equivalent.

A line of the form
# define identifier (identifier-list) token-sequence

where there is no space between the first identifier and the (, is a macro definition with
parameters given by the identifier list. As with the first form, leading and trailing white space
arround the token sequence is discarded, and the macro may be redefined only with a definition
in which the number and spelling of parameters, and the token sequence, isidentical.

A control line of the form
# undef identifier

causes the identifier's preprocessor definition to be forgotten. It is not erroneous to apply
#undef to an unknown identifier.

When a macro has been defined in the second form, subsequent textual instances of the macro
identifier followed by optional white space, and then by (, a sequence of tokens separated by
commas, and a ) constitute a cal of the macro. The arguments of the call are the comma-
separated token sequences; commas that are quoted or protected by nested parentheses do not
separate arguments. During collection, arguments are not macro-expanded. The number of
arguments in the cal must match the number of parameters in the definition. After the
arguments are isolated, leading and trailing white space is removed from them. Then the token
sequence resulting from each argument is substituted for each unquoted occurrence of the
corresponding parameter's identifier in the replacement token sequence of the macro. Unless
the parameter in the replacement sequence is preceded by #, or preceded or followed by ##,
the argument tokens are examined for macro calls, and expanded as necessary, just before
insertion.

Two specia operators influence the replacement process. First, if an occurrence of a parameter
in the replacement token sequence is immediately preceded by #, string quotes (") are placed
around the corresponding parameter, and then both the # and the parameter identifier are
replaced by the quoted argument. A \ character is inserted before each " or \ character that
appears surrounding, or inside, a string literal or character constant in the argument.

Second, if the definition token sequence for either kind of macro contains a ## operator, then
just after replacement of the parameters, each ## is deleted, together with any white space on
either side, so as to concatenate the adjacent tokens and form a new token. The effect is
undefined if invaid tokens are produced, or if the result depends on the order of processing of
the ## operators. Also, ## may not appear at the beginning or end of a replacement token
sequence.
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In both kinds of macro, the replacement token sequence is repeatedly rescanned for more
defined identifiers. However, once a given identifier has been replaced in a given expansion, it
is not replaced if it turns up again during rescanning; instead it is left unchanged.

Even if the find value of a macro expansion begins with with #, it is not taken to be a
preprocessing directive.
The details of the macro-expansion process are described more precisely in the ANSI standard than in
the first edition. The most important change is the addition of the # and ## operators, which make

quotation and concatenation admissible. Some of the new rules, especially those involving
concatenation, are bizarre. (See example below.)

For example, this facility may be used for " manifest-constants,” asin

#defi ne TABSI ZE 100
i nt tabl e[ TABSI ZE] ;

The definition

#define ABSDI FF(a, b) ((a)>(b) ? (a)-(b) : (b)-(a))
defines a macro to return the absolute value of the difference between its arguments. Unlike a
function to do the same thing, the arguments and returned value may have any arithmetic type
or even be pointers. Also, the arguments, which might have side effects, are evaluated twice,
once for the test and once to produce the value.

Given the definition

#define tempfil e(dir) #dir "9s"
themacro call t enpfi | e(/usr/tnp) yieds

"fusr/tnmp" "Y%"
which will subsequently be catenated into asingle string. After

#define cat(x, y) X ##y
the cal cat (var, 123) yiedsvar 123. However, the call cat (cat (1, 2), 3) is undefined: the
presence of ## prevents the arguments of the outer call from being expanded. Thus it produces
the token string

cata ( 1 , 2 )3
and ) 3 (the catenation of the last token of the first argument with the first token of the second)
isnot alegal token. If asecond level of macro definition is introduced,

#def i ne xcat (x, vy) cat (x,Y)
things work more smoothly; xcat (xcat (1, 2), 3) does produce 123, because the expansion
of xcat itself does not involve the ## operator.

Likewise, ABSDI FF( ABSDI FF( a, b), ¢) produces the expected, fully-expanded result.

A.12.4 FileInclusion
A control line of the form
# incl ude <filename>

causes the replacement of that line by the entire contents of the file filename. The charactersin
the name filename must not include > or newline, and the effect is undefined if it contains any
of ", ', \, or /*. The named file is searched for in a sequence of implementation-defined
places.

Similarly, a control line of the form

# incl ude "filename"
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searches first in association with the origina source file (a deliberately implementation-
dependent phrase), and if that search fails, then as in the first form. The effect of using ', \, or
/* in the filename remains undefined, but > is permitted.

Finally, adirective of the form
# i ncl ude token-sequence

not matching one of the previous forms is interpreted by expanding the token sequence as for
normal text; one of the two forms with <...> or "..." must result, and is then treated as
previously described.

#i ncl ude files may be nested.

A.12.5 Conditional Compilation

Parts of a program may be compiled conditionaly, according to the following schematic
syntax.

preprocessor-conditional :
if-line text elif-parts else-part: #endi f

if-line:

# i f constant-expression
# ifdef identifier

# ifndef identifier

elif-parts:
elif-line text
elif-partsop

eif-line:
# el i f constant-expression

else-part:
else-line text

else-line:
t#el se

Each of the directives (if-line, dif-line, else-line, and #endi f) appears aone on a line. The
constant expressions in #i f and subsequent #elif lines are evaluated in order until an
expression with a non-zero value is found; text following a line with a zero value is discarded.
The text following the successful directive line is treated normaly. ~"Text" here refers to any
materia, including preprocessor lines, that is not part of the conditional structure; it may be
empty. Once a successful #i f or #el i f line has been found and its text processed, succeeding
#el i f and #el se lines, together with their text, are discarded. If dl the expressions are zero,
and there is an #el se, the text following the #el se is treated normally. Text controlled by
inactive arms of the conditional isignored except for checking the nesting of conditionals.

The constant expression in #if and #elif is subject to ordinary macro replacement.
Moreover, any expressions of the form

defi ned identifier
or

defi ned (identifier)
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are replaced, before scanning for macros, by 1L if the identifier is defined in the preprocessor,
and by oL if not. Any identifiers remaining after macro expansion are replaced by oL. Finally,
each integer constant is considered to be suffixed with L, so that dl arithmetic is taken to be
long or unsigned long.

The resulting constant expression (Par.A.7.19) is restricted: it must be integral, and may not
contain si zeof , acast, or an enumeration constant.

The control lines

#i f def identifier
#i f ndef identifier

are equivalent to

# if defined identifier
# if ! defined identifier

respectively.
#el i f is new since the first edition, although it has been available is some preprocessors. The
def i ned preprocessor operator is also new.

A.12.6 Line Control
For the benefit of other preprocessors that generate C programs, alinein one of the forms

# |i ne constant " filename"
# | i ne constant

causes the compiler to believe, for purposes of error diagnostics, that the line number of the
next source line is given by the decimal integer constant and the current input file is named by
the identifier. If the quoted filename is absent, the remembered name does not change. Macros
in the line are expanded before it is interpreted.

A.12.7 Error Generation
A preprocessor line of the form
# error token-sequencey

causes the preprocessor to write a diagnostic message that includes the token sequence.

A.12.8 Pragmas
A control line of the form
# pragma token-sequence,y

causes the preprocessor to perform an implementation-dependent action. An unrecognized
pragmaisignored.

A.12.9 Null directive
A control line of the form
#

has no effect.
A.12.10 Predefined names
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Several identifiers are predefined, and expand to produce specid information. They, and also

the preprocessor expansion operator def i ned, may not be undefined or redefined.

__LINE__ A decimal constant containing the current source line number.

__FILE__ A string literal containing the name of the file being compiled.

__DATE__ A string literal containing the date of compilation, in the form " Mmm dd yyyy"

__TIME__ A string literal containing the time of compilation, in the form " hh: nm ss"

STDC The constant 1. It isintended that this identifier be defined to be 1 only in standard-
— conforming implementations.

#error and #pragna are new with the ANSI standard; the predefined preprocessor macros are
new, but some of them have been available in some implementations.

A.13 Grammar

Below is a recapitulation of the grammar that was given throughout the earlier part of this
appendix. It has exactly the same content, but isin different order.

The grammar has undefined terminal symbols integer-constant, character-constant, floating-
constant, identifier, string, and enumeration-constant; the typewriter style words and
symbols are terminals given literally. This grammar can be transformed mechanically into input
acceptable for an automatic parser-generator. Besides adding whatever syntactic marking is
used to indicate aternatives in productions, it is necessary to expand the “one of"
constructions, and (depending on the rules of the parser-generator) to duplicate each
production with an opt symbol, once with the symbol and once without. With one further
change, namely deleting the production typedef-name: identifier and making typedef-name a
terminal symbal, this grammar is acceptable to the YACC parser-generator. It has only one
conflict, generated by thei f - el se ambiguity.

translation-unit:
external-declaration
trand ation-unit external-declaration

external-declaration:
function-definition
declaration

function-definition:
declaration-specifier s, declarator declaration-list,,: compound-statement

declaration:
declaration-specifiers init-declarator-listoy;

declaration-list:
declaration
declaration-list declaration

declaration-specifiers:
storage-class-specifier declaration-specifier Sy
type-specifier declaration-specifier S
type-qualifier declaration-specifiersoy

storage-class specifier: one of
auto register static extern typedef

type specifier: one of
voi d char short int long float double signed
unsi gned struct-or-union-specifier enum-specifier typedef-name
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type-qualifier: one of
const volatile

struct-or-union-specifier:
struct-or-union identifierq, { struct-declaration-list }
struct-or-union identifier

struct-or-union: one of
struct union

struct-declaration-list:
struct declaration
struct-declaration-list struct declaration

init-declarator-list:
init-declarator
init-declarator-list, init-declarator

init-declarator:
declarator
declarator = initializer

struct-declaration:
specifier-qualifier-list struct-declarator-list;

specifier-qualifier-list:
type-specifier specifier-qualifier-listoy
type-qualifier specifier-qualifier-listop

struct-declarator-list:
struct-declarator
struct-declarator-list, struct-declarator

struct-declarator:
declarator
declarator,, : constant-expression

enum-specifier:
enumidentifierqy { enumerator-list }
enumidentifier

enumer ator-list:
enumer ator
enumerator-list, enumerator

enumerator:
identifier
identifier = constant-expression

declarator:
pointer o direct-declarator

direct-declarator:
identifier
( declarator)
direct-declarator [ constant-expressi Ongp: ]



direct-declarator ( parameter-type-list)
direct-declarator ( identifier-listoy )

pointer:
* type-qualifier-listop
* type-qualifier-listo, pointer

type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

parameter -type-list:
parameter-list
parameter-list ,

parameter-list:
parameter-declaration
parameter-list, parameter-declaration

parameter-declaration:
declaration-specifiers declarator
declaration-specifiers abstract-declarator o

identifier-list:
identifier
identifier-list, identifier

initializer:
assignment-expression
{ initializer-list }

{ initializer-list, }

initializer-list:
initializer
initializer-list , initializer

type-name:
specifier-qualifier-list abstract-declarator o

abstract-declarator:
pointer
pointer . direct-abstract-declarator

direct-abstract-declarator:
( abstract-declarator )
direct-abstract-declarator ;[ constant-expressi 0Ny
direct-abstract-declarator . (parameter-type-listop)

typedef-name:
identifier

Statement:
|abel ed-statement
expression-statement
compound-statement
sel ection-statement

195



iteration-statement
jump-statement

|abel ed-statement:
identifier : statement
case constant-expression : statement
def aul t : statement

expression-statement:
expr essi ONgy;

compound-statement:
{ declaration-listo statement-listop }

statement-list:
statement
statement-list statement

sel ection-statement:
i f (expression) statement
i f (expression) statement el se statement
swi t ch (expression) statement

iteration-statement:
whi | e (expression) statement
do statement whi | e (expression);
f or (EXPressiony; expressiong; EXPressiong) statement

jump-statement:
got o identifier;
conti nue;
br eak;
r et ur n expressiOngy;

expression:
assignment-expression
expression, assignment-expression

assignment-expression:
conditional-expression

unary-expression assignment-operator assignment-expression

assignment-operator: one of
= *= [= Uy += -= <<= >>= &= = |:

conditional -expression:
logical-OR-expression

logical-OR-expression ? expression : conditional-expression

constant-expression:
conditional-expression

logical-OR-expression:
logical-AND-expression
logical-OR-expression | | logical-AND-expression
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logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

exclusive-OR-expression:
AND-expression
exclusive-OR-expression ~ AND-expression

AND-expression:
equality-expression
AND-expression & equality-expression

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression ! = relational-expression

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

multiplicative-expression:
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression %cast-expression

cast-expression:
unary expression
(type-name) cast-expression

unary-expression:
postfix expression
++Unary expression
- - unary expression
unary-operator cast-expression
si zeof unary-expression
si zeof (type-name)
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unary operator: one of
&* + - ~ |

postfix-expression:
primary-expression
postfix-expression[ expression]
postfix-expression(argument-expr ession-list o)
postfix-expression.identifier
postfix-expression- >+identifier
postfix-expression++
postfix-expression- -

primary-expression:
identifier
constant
string
(expression)

argument-expression-list:
assignment-expression
assignment-expression-list, assignment-expression

constant:
integer-constant
character-constant
floating-constant
enumer ation-constant

The following grammar for the preprocessor summarizes the structure of control lines, but is
not suitable for mechanized parsing. It includes the symbol text, which means ordinary program
text, non-conditional preprocessor control lines, or complete preprocessor conditiona
instructions.

control-line:
# defi ne identifier token-sequence
def i ne identifier(identifier, ... , identifier) token-sequence
undef identifier
i ncl ude <filename>
i ncl ude " filename"
| i ne constant " filename"
I i ne constant
error token-sequencey
pr agna token-sequenceyy

HOH O H O H H H R

preprocessor-conditional

preprocessor-conditional :
if-line text elif-parts else-part: #endi f

if-line:

# i f constant-expression
# ifdef identifier

# ifndef identifier



elif-parts:
elif-line text
elif-partsyp

eif-line:
# el i f constant-expression

else-part:
else-line text

ese-line
t#el se

199
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Appendix B - Standard Library

This appendix is a summary of the library defined by the ANSl standard. The standard library
is not part of the C language proper, but an environment that supports standard C will provide
the function declarations and type and macro definitions of this library. We have omitted a few
functions that are of limited utility or easly synthesized from others;, we have omitted multi-
byte characters; and we have omitted discussion of locale issues; that is, properties that depend
on local language, nationality, or culture.

The functions, types and macros of the standard library are declared in standard headers:

<assert.h> <float.h> <math. h> <stdarg. h> <stdlib.h>
<ctype.h> <limts.h> <setjnp.h> <stddef.h> <string.h>
<errno. h> <l ocal e. h> <signal.h> <stdio.h> <tine. h>

A header can be accessed by
#i ncl ude <header>

Headers may be included in any order and any number of times. A header must be included
outside of any external declaration or definition and before any use of anything it declares. A
header need not be a sourcefile.

External identifiers that begin with an underscore are reserved for use by the library, as are dl
other identifiers that begin with an underscore and an upper-case letter or another underscore.

B.1 Input and Output: <stdio.h>

The input and output functions, types, and macros defined in <st di 0. h> represent nearly one
third of the library.

A stream is a source or destination of data that may be associated with a disk or other
peripheral. The library supports text streams and binary streams, although on some systems,
notably UNIX, these are identical. A text stream is a sequence of lines; each line has zero or
more characters and is terminated by ' \ n' . An environment may need to convert atext stream
to or from some other representation (such as mapping ' \ n' to carriage return and linefeed).
A binary stream is a sequence of unprocessed bytes that record internal data, with the property
that if it iswritten, then read back on the same system, it will compare equal.

A stream is connected to afile or device by opening it; the connection is broken by closing the
stream. Opening a file returns a pointer to an object of type FI LE, which records whatever
information is necessary to control the stream. We will use “file pointer" and " "stream"
interchangeably when there is no ambiguity.

When a program begins execution, the three streams st di n, st dout , and st derr are already
open.

B.1.1 File Operations

The following functions deal with operations on files. The type si ze_t isthe unsigned integral
type produced by the si zeof operator.
FI LE *fopen(const char *fil enane, const char *node)
f open opens the named file, and returns a stream, or NULL if the attempt fals. Legal
valuesfor mode include:
“r"  open text filefor reading
"W create text file for writing; discard previous contents if any
"a"  append; open or create text file for writing at end of file
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"r+" open text file for update (i.e., reading and writing)
"w+" create text file for update, discard previous contents if any
"a+" append; open or create text file for update, writing at end
Update mode permits reading and writing the same file; 1 ush or a file-positioning
function must be called between aread and awrite or vice versa. If the mode includesb
after the initia letter, asin "rb" or "w+b", that indicates a binary file. Filenames are
limited to FI LENAVE_MAX characters. At most FOPEN_MAX files may be open at once.
FI LE *freopen(const char *filename, const char *node, FILE *stream
freopen opens the file with the specified mode and associates the stream with it. It
returns st ream or NULL if an error occurs. freopen is normaly used to change the
files associated with st di n, st dout , Or stderr.
int fflush(FILE *stream
On an output stream, f f | ush causes any buffered but unwritten data to be written; on
an input stream, the effect is undefined. It returns EOF for a write error, and zero
otherwise. f f 1 ush(NULL) flushes al output streams.
int fclose(FILE *stream
fcl ose flushes any unwritten data for stream discards any unread buffered input,
frees any automatically alocated buffer, then closes the stream. It returns ECF if any
errors occurred, and zero otherwise.
int renove(const char *fil enane)
renove removes the named file, so that a subsequent attempt to open it will fal. It
returns non-zero if the attempt fails.
i nt renane(const char *ol dnane, const char *newnane)
r ename changes the name of afile; it returns non-zero if the attempt fails.
FILE *tnpfil e(voi d)
tnpfil e creates a temporary file of mode "wb+" that will be automatically removed
when closed or when the program terminates normally. t npfi | e returns a stream, or
NULL if it could not create thefile.
char *tnpnam(char s[L_tnpnam)
t npnan( NULL) creates a string that is not the name of an existing file, and returns a
pointer to an interna static array. t npnan(s) stores the string in s as well as returning
it as the function vaue; s must have room for at least L_t npnam characters. t npnam
generates a different name each time it is called; at most TMP_MAX different names are
guaranteed during execution of the program. Note that t npnam creates a name, not a
file.
i nt setvbuf (FILE *stream char *buf, int node, size t size)
set vbuf controls buffering for the stream; it must be called before reading, writing or
any other operation. A node of _I OFBF causes full buffering, _I OLBF line buffering of
text files, and _I ONBF no buffering. If buf is not NULL, it will be used as the buffer,
otherwise a buffer will be alocated. si ze determines the buffer size. set vbuf returns
non-zero for any error.
voi d set buf (FILE *stream char *buf)
If buf IS NULL, buffering is turned off for the stream. Otherwise, set buf is equivalent
to (void) setvbuf(stream buf, _|OFBF, BUFSI Z).

B.1.2 Formatted Output
Theprintf functions provide formatted output conversion.

int fprintf(FILE *stream const char *format, ...)
fprintf converts and writes output to st r eamunder the control of f or mat . The return value
is the number of characters written, or negative if an error occurred.

The format string contains two types of objects. ordinary characters, which are copied to the
output stream, and conversion specifications, each of which causes conversion and printing of
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the next successve argument to fprintf. Each conversion specification begins with the
character %and ends with a conversion character. Between the % and the conversion character
there may be, in order:

Flags (in any order), which modify the specification:
o -, which specifiesleft adjustment of the converted argument in its field.
o +, which specifies that the number will always be printed with asign.
o gpace: if thefirst character is not asign, a space will be prefixed.

o 0: for numeric conversions, specifies padding to the fidd width with leading
zeros.

o #, which specifies an alternate output form. For o, the first digit will become
zero. For x or X, 0x or oxX will be prefixed to a non-zero result. For e, E, f, g,
and G, the output will dways have a decimal point; for g and G, trailing zeros
will not be removed.

A number specifying a minimum field width. The converted argument will be printed in
afield a least this wide, and wider if necessary. If the converted argument has fewer
characters than the fidld width it will be padded on the left (or right, if left adjustment
has been requested) to make up the fiedd width. The padding character is normally
space, but is 0 if the zero padding flag is present.

A period, which separates the field width from the precision.

A number, the precision, that specifies the maximum number of characters to be printed
from a string, or the number of digitsto be printed after the decimal point for e, E, or f
conversions, or the number of sgnificant digits for g or G conversion, or the number of
digits to be printed for an integer (leading 0s will be added to make up the necessary
width).

A length modifier h, 1| (letter €l), or L. ~"h" indicates that the corresponding argument
is to be printed as ashort or unsi gned short; | " indicates that the argument is a
| ong or unsi gned | ong, L" indicates that the argument isal ong doubl e.

Width or precison or both may be specified as *, in which case the value is computed by
converting the next argument(s), which must bei nt .

The conversion characters and their meanings are shown in Table B.1. If the character after the
%is not a conversion character, the behavior is undefined.

\d, i
\o

\u
\c

S

Character | Argument type; Printed As

X, X

Table B.1 Printf Conversions

i nt ; Signed decimal notation. |
i nt ; unsigned octal notation (without a leading zero). |
unsi gned i nt ; unsigned hexadecimal notation (without aleading 0x or 0X),

using abcdef for Ox or ABCDEF for OX.
i nt ; unsigned decimal notation.
i nt ; single character, after conversion to unsi gned char

char *; characters from the string are printed until a' \ 0' isreached or until the
number of characters indicated by the precision have been printed.
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doubl e; decimal notation of the form [ - ] mmm.ddd, where the number of d'sis

f given by the precision. The default precision is 6; a precision of O suppresses the
decimal point.
doubl e; decimal notation of the form [ -] m.dddddde+/ - xx or [ -] m.ddddddE+/ -
e E xX, where the number of d'sis specified by the precision. The default precision is

6; aprecision of 0 suppresses the decimal point.
doubl e; % or 9% is used if the exponent isless than -4 or greater than or equal to

9, G the precision; otherwise % isused. Trailing zeros and atrailing decimal point are
not printed.
p voi d *; print as apointer (implementation-dependent representation).

i nt *; the number of characters written so far by thiscall topri nt f iswritten
into the argument. No argument is converted.

% 'no argument is converted; print a % |

int printf(const char *format, ...)
printf(...) isequivalenttofprintf(stdout, ...).

int sprintf(char *s, const char *format, ...)
sprintf isthe same as printf except that the output is written into the string s,
terminated with ' \ 0' . s must be big enough to hold the result. The return count does

not includethe '\ 0' .
int vprintf(const char *format, va_list arg)
int vfprintf(FILE *stream const char *format, va list arg)

int vsprintf(char *s, const char *format, va_ list arg)
The functions vprintf, vfprintf, and vsprintf are equivaent to the corresponding
printf functions, except that the variable argument ligt is replaced by ar g, which has
been initidized by theva_st art macro and perhapsva_ar g cals. See the discussion of
<st dar g. h>in Section B.7.

B.1.3 Formatted I nput
The scanf function deals with formatted input conversion.

int fscanf(FILE *stream const char *format, ...)

f scanf reads from st ream under control of format, and assigns converted vaues through
subsequent arguments, each of which must be a pointer. It returns when f or mat is exhausted.
f scanf returns ECF if end of file or an error occurs before any conversion; otherwise it returns
the number of input items converted and assigned.

The format string usually contains conversion specifications, which are used to direct
interpretation of input. The format string may contain:

Blanks or tabs, which are not ignored.

Ordinary characters (not %), which are expected to match the next non-white space
character of the input stream.

Conversion specifications, consisting of a % an optional assgnment suppression
character *, an optional number specifying a maximum field width, an optional h, I, or
L indicating the width of the target, and a conversion character.

A conversion specification determines the conversion of the next input field. Normally the
result is placed in the variable pointed to by the corresponding argument. If assignment
suppression is indicated by *, as in %s, however, the input fidd is smply skipped; no
assgnment is made. An input field is defined as a string of non-white space characters; it
extends either to the next white space character or until the fied width, if specified, is
exhausted. This implies that scanf will read across line boundaries to find its input, since
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newlines are white space. (White space characters are blank, tab, newline, carriage return,
vertical tab, and formfeed.)

The conversion character indicates the interpretation of the input field. The corresponding
argument must be a pointer. The legal conversion characters are shown in Table B.2.

The conversion characters d, i, n, o, u, and x may be preceded by h if the argument is a
pointer to short rather than int, or by | (letter dl) if the argument is a pointer to | ong. The
conversion characters e, f, and g may be preceded by | if a pointer to doubl e rather than
f1 oat isinthe argument list, and by L if apointer toal ong doubl e.

Table B.2 Scanf Conversions

Character | Input Data; Argument type |

d | decimal integer; i nt * |

i integer; i nt *. Theinteger may bein octal (leading 0) or hexadecimal (leading 0x
or 0X).

o |octal integer (with or without leading zero); i nt *. |

u |unsigned decimal integer; unsi gned int *. |

X  hexadecimal integer (with or without leading 0x or 0X); i nt *. |

characters; char *. The next input characters are placed in the indicated array, up
to the number given by the width field; the defaultis1. No ' \ 0' isadded. The
normal skip over white space charactersis suppressed in this case; to read the
next non-white space character, use %s.

string of non-white space characters (not quoted); char *, pointing to an array

S of characters large enough to hold the string and aterminating ' \ 0' that will be
added.
floating-point number; f1 oat *. Theinput format for f | oat 'sis an optional sign,

e,f,g astring of numbers possibly containing a decimal point, and an optional exponent
field containing an E or e followed by a possibly signed integer.

p |pointer value as printed by printf ("%");,void *. |

writes into the argument the number of characters read so far by thiscall; i nt *.

No input is read. The converted item count is not incremented.

(] matches the longest non-empty string of input characters from the set between
brackets; char *. A'\0' isadded. []...] includes] inthe s&t.

[~ ] matches the longest non-empty string of input characters not from the set
o between brackets; char *. A '\ 0' isadded. [~]...] includes] inthe set.

% literal %; no assignment is made. |
i nt scanf(const char *format, ...)

scanf (...) isidentical tofscanf(stdin, ...).
i nt sscanf(const char *s, const char *format, ...)

sscanf (s, ...) is equivaent to scanf(...) except that the input characters are

taken from the string s.
B.1.4 Character Input and Output Functions

int fgetc(FILE *stream
f get ¢ returns the next character of stream as an unsi gned char (converted to an
i nt), or ECF if end of file or error occurs.

char *fgets(char *s, int n, FILE *strean
f get s reads a most the next n- 1 characters into the array s, stopping if a newline is
encountered; the newline is included in the array, which is terminated by '\ 0' . fget s
returns s, or NULL if end of file or error occurs.
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int fputc(int ¢, FILE *strean)
f put ¢ writes the character ¢ (converted to an unsi gend char) on stream It returns
the character written, or ECF for error.

int fputs(const char *s, FILE *strean)
f puts writes the string s (which need not contain \n) on streani it returns non-
negative, or ECF for an error.

int getc(FILE *strean
get ¢ is equivaent to f get c except that if it is a macro, it may evaluate st r eam more
than once.

i nt getchar(void)
get char isequivaent to get c(stdin).

char *gets(char *s)
get s reads the next input line into the array s; it replaces the terminating newline with
"\0'.Itreturnss, or NULL if end of file or error occurs.

int putc(int ¢, FILE *stream
put ¢ IS equivalent to f put ¢ except that if it is a macro, it may evaluate st r eam more
than once.

int putchar(int c)
put char (c¢) isequivaent to put c(c, stdout).

i nt puts(const char *s)
put s writes the string s and a newline to st dout . It returns ECF if an error occurs,
non-negative otherwise.

int ungetc(int c, FILE *stream
unget ¢ pushes c (converted to an unsi gned char) back onto st r eam where it will be
returned on the next read. Only one character of pushback per stream is guaranteed.
ECF may not be pushed back. unget ¢ returns the character pushed back, or ECF for
error.

B.1.5 Direct I nput and Output Functions

size_t fread(void *ptr, size t size, size_ t nobj, FILE *stream
f r ead reads from st r eaminto the array ptr a most nobj objects of sSize si ze. fread
returns the number of objects read; this may be less than the number requested. f eof
and f err or must be used to determine status.

size t fwite(const void *ptr, size t size, size_t nobj, FILE *stream
fwrite writes, fromthe array ptr, nobj objects of Szesi ze onstream It returns the
number of objects written, which is less than nobj on error.

B.1.6 File Positioning Functions

int fseek(FILE *stream |ong offset, int origin)
f seek sets the file position for streanj a subsequent read or write will access data
beginning at the new position. For a binary file, the position is set to of f set characters
from ori gi n, which may be SEEK_SET (beginning), SEEK_CUR (current position), or
SEEK_END (end of file). For atext stream, of f set must be zero, or a value returned by
ftell (inwhich caseorigi n must be SEEK_SET). f seek returns non-zero on error.

long ftell (FILE *stream
ftel | returnsthe current file position for st ream or - 1 on error.

voi d rew nd(FI LE *stream
rewi nd(fp) isequivaentto f seek(fp, OL, SEEK SET); clearerr(fp).

int fgetpos(FILE *stream fpos_t *ptr)
f get pos records the current position in stream in *ptr, for subsequent use by
f set pos. The type f pos_t is suitable for recording such values. f get pos returns non-
Zero on error.

int fsetpos(FILE *stream const fpos_t *ptr)
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f set pos positions stream at the position recorded by fget pos in *ptr. fset pos
returns non-zero on error.

B.1.7 Error Functions

Many of the functions in the library set status indicators when error or end of file occur. These
indicators may be set and tested explicitly. In addition, the integer expression er r no (declared
in <errno. h>) may contain an error number that gives further information about the most
recent error.
void clearerr(FILE *stream
cl earerr clearsthe end of file and error indicators for st r eam
int feof (FILE *strean)
f eof returnsnon-zero if the end of file indicator for st r eamis set.
int ferror(FILE *stream
f error returns non-zero if the error indicator for st r eamis set.
voi d perror(const char *s)
perror(s) printss and an implementation-defined error message corresponding to the
integer inerrno, asif by

fprintf(stderr, "%: 9%\n", s, "€rror message");
Seestrerror in Section B.3.

B.2 Character Class Tests: <ctype.h>

The header <ctype. h> declares functions for testing characters. For each function, the
argument lig isan i nt, whose value must be EOF or representable as an unsi gned char, and
the return value is an i nt . The functions return non-zero (true) if the argument ¢ satisfies the
condition described, and zero if not.

i sal nun(c) isalpha(c) orisdigit(c) istrue

i sal pha(c) isupper(c) orislower(c) istrue

iscntrl(c) control character

isdigit(c) decima digit

i sgraph(c) printing character except space

i sl ower(c) lower-caseletter

isprint(c) printing character including space

i spunct (¢) printing character except space or letter or digit

i sspace(c) space, formfeed, newline, carriage return, tab, vertical tab

i supper (c) upper-case letter

i sxdigit(c) hexadecimal digit

In the seven-bit ASCII character set, the printing characters are 0x20 (' ') toO Ox7E ('-');
the control characters are O NUL to 0x1F (US), and ox7F (DEL).
In addition, there are two functions that convert the case of letters:

int tolower(c) convertc tolower case
int toupper(c) convertc to upper case

If ¢ is an upper-case letter, tol ower(c) returns the corresponding lower-case letter,
t oupper (c¢) returns the corresponding upper-case letter; otherwise it returnsc.

B.3 String Functions: <string.h>

There are two groups of string functions defined in the header <stri ng. h>. The first have
names beginning with st r ; the second have names beginning with mem Except for nemove,
the behavior is undefined if copying takes place between overlapping objects. Comparison
functions treat arguments as unsi gned char arrays.
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In the following table, variables s and t are of typechar *; cs and ct are of type const char
*:nisof typesize_t;andc isanint convertedto char .

char *strcpy(s,ct) copy stringct tostring s, including'\0' ; return's.

char copy at most n characters of string ct tos; returns. Pad with'\ 0" 's
*strncpy(s,ct,n) if ct has fewer than n characters.

char *strcat(s,ct) concatenatestringct toend of string s; return s.

char concatenate at most n characters of string ct to string s, terminate s

*strncat (s, ct,n) with'\ 0" ; return s.

int strcmp(cs, ct) compare string cs to string ct , return <0 if cs<ct, Oif cs==ct, or >0

if cs>ct .
i nt compare at most n characters of string cs to string ct ; return <0 if
strncnp(cs, ct, n) cs<ct, Oif cs==ct, or >0 if cs>ct .

char *strchr(cs,c) return pointer to first occurrence of ¢ in cs or NULL if not present.
char *strrchr(cs,c) return pointer to last occurrence of ¢ in cs or NULL if not present.

z't fgﬁtw( cs, ct) return length of prefix of cs consisting of charactersinct .
z't fﬁgtm( cs, ct) return length of prefix of cs consisting of characters notinct .
char return pointer to first occurrence in string cs of any character string
*strpbrk(cs,ct) ct, or NULL if not present.
return pointer to first occurrence of string ct incs, or NULL if not

char *strstr(cs,ct)
present.

size_t strlen(cs)  returnlength of cs.

return pointer to implementation-defined string corresponding to
error n.

strtok searches s for tokens delimited by characters from ct ; see
below.

A sequence of cdls of strtok(s, ct) splitss into tokens, each delimited by a character from
ct. The firgt cal in a sequence has a non-NULL s, it finds the first token in s consisting of
characters not in ct ; it terminates that by overwriting the next character of s with'\0' and
returns a pointer to the token. Each subsequent call, indicated by a NULL value of s, returns the
next such token, searching from just past the end of the previous one. strt ok returns NULL
when no further token isfound. The string ct may be different on each call.

char *strerror(n)

char *strtok(s,ct)

The mem .. functions are meant for manipulating objects as character arrays, the intent is an
interface to efficient routines. In the following table, s and t are of typevoi d *;cs and ct are
of type const void *;nisof typesize_t;andc isanint converted to an unsi gned char.
voi d

“nmencpy(s, ct, n)
l’ﬁ;ﬂmve( s, ct,n) same as nenctpy except that it works even if the objects overlap.

int mentnp(cs, ct, n) comparethefirst n characters of cs with ct ; return as with st r cnp.
voi d return pointer to first occurrence of character ¢ in cs, or NULL if not
*menthr(cs, ¢, n) present among the first n characters.

voi d *menset (s, ¢, n) place character c intofirst n charactersof s, return s.

B.4 M athematical Functions. <math.h>

The header <mat h. h> declares mathematical functions and macros.

The macros EDOM and ERANGE (found in <er r no. h>) are non-zero integral constants that are
used to signal domain and range errors for the functions; HUGE_VAL is a positive doubl e value.
A domain error occurs if an argument is outside the domain over which the function is
defined. On a domain error, errno is set to EDOV the return value is implementation-defined.
A range error occurs if the result of the function cannot be represented as a doubl e. If the

copy n charactersfrom ct tos, and return s.



208

result overflows, the function returns HUGE_VAL with the right sign, and errno is set to
ERANGE. If the result underflows, the function returns zero; whether err no is set to ERANGE IS
implementation-defined.

In the following table, x and y are of type doubl e, nisani nt, and al functions return doubl e.
Angles for trigonometric functions are expressed in radians.

si n(x) sine of x
cos(x) cosine of x
t an(x) tangent of x
asi n(x) sn(x) inrange [-pi/2,pi/2], x in[-1,1].
acos(x) cos*(x) inrange [O,pi], x in[-1,1].
at an( x) tan™(x) in range [-pi/2,pi/2].
atan2(y, x) tan*(y/x) in range [-pi,pi].
si nh(x) hyperbolic sine of x
cosh(x) hyperbolic cosine of x
t anh(x) hyperbolic tangent of x
exp(x) exponential function €
| og(x) natural logarithm In(x), x>0.
| 0g10( x) base 10 logarithm logo(x), X>0.
x¥. A domain error occurs if x=0 and y<=0, or if x<0 and y is not an
PoW(X, y) integer.
sqrt (x) sgare root of x, x>=0.
ceil (x) smallest integer not less than x, asadoubl e.
f1 oor (x) largest integer not greater than x, asadoubl e.
f abs(x) absolute value |x|
I dexp(x, n) X*2"
splits x into a normalized fraction in the interval [1/2,1) which is returned,

I{S;(p(x’ '™ and apower of 2, whichisstored in *exp. If X is zero, both parts of the

result are zero.
modf (x, doubl e splits x into integral and fractional parts, each with the same sign as x. It
*ip) stores the integral part in *i p, and returns the fractional part.
floating-point remainder of x/y, with the same sign as x. If y is zero, the
result is implementation-defined.

B.5 Utility Functions: <stdlib.h>

The header <stdlib. h> declares functions for number conversion, storage allocation, and

similar tasks. doubl e at of (const char *s)
at of convertss to doubl e; itisequivalentto strtod(s, (char**)NULL) .

int atoi (const char *s)
convertss toint;itisequivalentto (i nt)strtol (s, (char**)NULL, 10).

I ong atol (const char *s)
convertss tol ong; itisequivaenttostrtol (s, (char**)NULL, 10).

doubl e strtod(const char *s, char **endp)
strtod converts the prefix of s to doubl e, ignoring leading white space; it stores a
pointer to any unconverted suffix in *endp unless endp is NULL. If the answer would
overflow, HUGE_VAL is returned with the proper sign; if the answer would underflow,
zero isreturned. In either case er r no is Set to ERANGE.

long strtol (const char *s, char **endp, int base)
strtol converts the prefix of s to | ong, ignoring leading white space; it stores a
pointer to any unconverted suffix in *endp unless endp is NULL. If base is between 2
and 36, conversion is done assuming that the input is written in that base. If base is
zero, the base is 8, 10, or 16; leading O implies octal and leading 0x or 0X hexadecimal.

fmod(x,y)
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Letters in either case represent digits from 10 to base-1; a leading 0x or 0X is
permitted in base 16. If the answer would overflow, LONG MAX Oor LONG M N is
returned, depending on the sign of the result, and er r no is set to ERANGE.

unsi gned long strtoul (const char *s, char **endp, int base)
strtoul isthesame asstrtol except that the result is unsi gned 1 ong and the error
vaueis ULONG MAX.

i nt rand(void)
rand returns a pseudo-random integer in the range O to RAND_MAX, which is at least
32767.

voi d srand(unsi gned int seed)
srand uses seed as the seed for a new sequence of pseudo-random numbers. The
initial seedis 1.

void *call oc(size_t nobj, size_ t size)
cal | oc returns a pointer to space for an array of nobj objects, each of size si ze, or
NULL if the request cannot be satisfied. The spaceisinitiaized to zero bytes.

void *mal |l oc(size_ t size)
mal | oc returns a pointer to space for an object of size si ze, or NULL if the request
cannot be satisfied. The space is uninitialized.

void *realloc(void *p, size_t size)
real | oc changes the size of the object pointed to by p to si ze. The contents will be
unchanged up to the minimum of the old and new sizes. If the new size is larger, the
new space is uninitialized. r eal | oc returns a pointer to the new space, or NULL if the
request cannot be satisfied, in which case * p is unchanged.

void free(void *p)
free deallocates the space pointed to by p; it does nothing if p iSNULL. p must be a
pointer to space previoudy allocated by cal | oc, mal | oc, Or real | oc.

voi d abort (void)
abor t causes the program to terminate abnormally, asif by r ai se( SI GABRT) .

void exit(int status)
exi t causes normal program termination. at exi t functions are caled in reverse order
of registration, open files are flushed, open streams are closed, and control is returned
to the environment. How st at us Is returned to the environment is implementation-
dependent, but zero is taken as successful termination. The values EXI T_SUCCESS and
EXI T_FAI LURE may aso be used.

int atexit(void (*fcn)(void))
atexit registers the function f cn to be caled when the program terminates normally;
it returns non-zero if the registration cannot be made.

i nt system(const char *s)
syst em passes the string s to the environment for execution. If s iS NULL, system
returns non-zero if there is a command processor. If s is not NULL, the return value is
implementati on-dependent.

char *getenv(const char *nane)
get env returns the environment string associated with nane, or NULL if no string exists.
Details are implementati on-dependent.

voi d *bsearch(const void *key, const void *base,
size t n, size_ t size,
int (*cnp)(const void *keyval, const void *datum)

bsear ch searchesbase[ 0] . .. base[ n- 1] for an item that matches *key. The function
cnp must return negative if its first argument (the search key) is less than its second (a
table entry), zero if equal, and positive if greater. Items in the array base must be in
ascending order. bsear ch returns a pointer to a matching item, or NULL if none exists.

voi d gsort(void *base, size_ t n, size_t size,
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int (*cnp)(const void *, const void *))
gsort sorts into ascending order an array base[ 0] . .. base[ n-1] of objects of sze
si ze. The comparison function cnp isasin bsear ch.
int abs(int n)
abs returns the absolute value of itsi nt argument.
I ong | abs(long n)
| abs returns the absolute value of its | ong argument.
div_t div(int num int denon)
di v computes the quotient and remainder of num denom The results are stored in the
i nt members quot and remof astructure of typedi v_t .
[div_t lIdiv(long num |ong denom
| di v.computes the quotient and remainder of numi denom The results are stored in the
| ong members quot and r emof a structure of typel div_t .

B.6 Diagnostics. <assert.h>
Theassert macro is used to add diagnostics to programs:

voi d assert(int expression)

If expression is zero when
assert (expression)

is executed, the assert macro will print on st der r amessage, such as
Assertion failed: expression, fil e filename, I i ne nnn

It then cdls abort to terminate execution. The source filename and line number come from the
preprocessor macros __FILE _and __ LINE .

If NDEBUG is defined at the time <assert . h> isincluded, the assert macro isignored.

B.7 Variable Argument Lists. <stdarg.h>

The header <st dar g. h> provides facilities for stepping through alist of function arguments of
unknown number and type.

Suppose | astarg is the last named parameter of a function f with a variable number of
arguments. Then declare within f a variable of type va_l i st that will point to each argument
inturn:

va_list ap;
ap must be initialized once with the macro va_start before any unnamed argument is
accessed:

va_start(va_list ap, lastarg);

Thereafter, each execution of the macro va_ar g will produce a vaue that has the type and
value of the next unnamed argument, and will also modify ap so the next use of va_ar g returns
the next argument:

typeva_arg(va_list ap, type);
The macro

void va_end(va_list ap);
must be called once after the arguments have been processed but beforef isexited.
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B.8 Non-local Jumps: <setjmp.h>

The declarations in <set j np. h> provide a way to avoid the normal function call and return

sequence, typically to permit an immediate return from a deeply nested function call.

int setjnp(jnp_buf env)
The macro set j np saves state information in env for use by | ongj np. The return is
zero from adirect cal of set j np, and non-zero from a subsequent cal of | ongj np. A
cal to setj np can only occur in certain contexts, basically the test of i f, swi tch, and
loops, and only in simple relational expressions.

if (setjnp(env) == 0)

/* get here on direct call */
el se

/* get here by calling longjnmp */

voi d | ongj np(j np_buf env, int val)

| ongj mp restores the state saved by the most recent call to setjnp, usng the
information saved in env, and execution resumes as if the setj np function had just
executed and returned the non-zero vaue val . The function containing the set j np
must not have terminated. Accessble objects have the values they had a the time
| ongj mp was called, except that non-vol ati |l e automatic variables in the function
caling set j np become undefined if they were changed after the set j np call.

B.9 Signals. <signal.h>

The header <si gnal . h> provides facilities for handling exceptional conditions that arise during
execution, such as an interrupt signal from an external source or an error in execution.

void (*signal (int sig, void (*handler)(int)))(int)
si gnal determines how subsequent signas will be handled. If handl er is SI G DFL, the
implementation-defined default behavior is used, if it is SIG 1 G\, the signa is ignored;
otherwise, the function pointed to by handl er will be called, with the argument of the type of
signa. Valid signalsinclude

SI GABRT  abnormal termination, e.g., from abor t

SI G-PE arithmetic error, e.g., zero divide or overflow

SIGLL illegal function image, e.g., illegal instruction

SI G NT interactive attention, e.g., interrupt

SI GSEGV  illegal storage access, e.g., access outside memory limits

SI GTERM  termination request sent to this program

si gnal returns the previous vaue of handl er for the specific sgnal, or SI G ERR if an error
occurs.

When a signal si g subsequently occurs, the signal is restored to its default behavior; then the
signal-handler function is called, as if by (*handl er) (si g) . If the handler returns, execution
will resume where it was when the signal occurred.

Theinitial state of signals isimplementation-defined.

int raise(int sig)
rai se sendsthe signa si g to the program; it returns non-zero if unsuccessful.

B.10 Date and Time Functions. <time.h>

The header <time. h> declares types and functions for manipulating date and time. Some
functions process local time, which may differ from calendar time, for example because of time
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zone. cl ock_t and tine_t are arithmetic types representing times, and st ruct t mholds the
components of a calendar time:
int tmsec;  seconds after the minute (0,61)
nt tmmn;  minutes after the hour (0,59)
nt tm_hour;  hourssince midnight (0,23)
nt tmnday; day of the month (1,31)
nt tmnon;  months since January (0,11)
nt tmyear; yearssince 1900
nt tmwday; dayssince Sunday (0,6)
nt tmyday; dayssince January 1 (0,365)
nt tm.isdst; Daylight Saving Timeflag

tmisdst is postive if Daylight Saving Time is in effect, zero if not, and negative if the
information is not available.

clock_t clock(void)
cl ock returns the processor time used by the program since the beginning of execution,
or - 1 if unavailable. cl ock()/ CLK_PER_SECisatimein seconds.

time_t tine(tine_t *tp)
ti me returns the current calendar time or -1 if the time is not available. If tp is not
NULL, the return value is also assigned to *t p.

double difftinme(time_t tinme2, time_t tinel)
difftimereturnsti ne2-timel expressed in seconds.

time_t nktine(struct tm *tp)
mkti me converts the local time in the structure *tp into calendar time in the same
representation used by ti me. The components will have values in the ranges shown.
mkt i me returns the calendar time or - 1 if it cannot be represented.

The next four functions return pointers to static objects that may be overwritten by other calls.

char *asctime(const struct tm *tp)

asctinme</tt< converts the tine in the structure *tp into a string of
the form

Sun Jan 3 15:14:13 1988\n\0
char *ctine(const tine_ t *tp)
ctine converts the calendar tinme *tp to local tinme; it is equivalent
to

asctime(localtine(tp))

struct tm*gntime(const time_t *tp)
gnminme converts the calendar tine *tp into Coordi nated Universal Tine
(UTCG). It returns NULL if UTC is not available. The nanme gntine has
hi storical significance.

struct tm*localtime(const time_t *tp)
localtinme converts the calendar tinme *tp into |local tine.

size_ t strftime(char *s, size_ t smax, const char *fm, const struct tm*tp)
strftine formats date and tinme information from *tp into s according
to fmt, which is analogous to a printf format. Odinary characters
(including the terminating '\0") are copied into s. Each % is
repl aced as described below, using values appropriate for the |oca
environnent. No nmore than smax characters are placed into s. strftine
returns the nunber of characters, excluding the '\0', or zero if nore
than smax characters were produced.

%  abbreviated weekday name.

%A full weekday name.

%  abbreviated month name.

o8  full month name,

%  |ocal date and time representation.
%l  day of the month (01- 31).

%1  hour (24-hour clock) (00- 23).
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%  hour (12-hour clock) (01-12).

%  day of theyear (001- 366) .

%n  month (01-12).

9 minute (00-59) .

% loca equivalent of AM or PM.

%  second (00-61) .

% week number of the year (Sunday as 1st day of week) (00- 53) .
%v  weekday (0- 6, Sunday is 0).

%W week number of the year (Monday as 1st day of week) (00- 53) .
%  local date representation.

% local time representation.

%  year without century ( 00- 99) .

% year with century.

% timezone name, if any.

Wo %

B.11 I nplenentation-defined Limts:
<limts.h> and <fl oat. h>

The header <limts.h> defines constants for the sizes of integral types.
The values below are acceptable mninum magnitudes; |arger values may be
used.

CHAR BIT 8 bits in a char

CHAR MAX gg”&gjmgé or maxi mum val ue of char
CHAR MN 0 or SCHAR M N maximum value of char

| NT_MAX 32767 maximum value of i nt

INT_MN - 32767 minimum value of i nt

LONG MAX 2147483647 maximum value of | ong

LONG M N  -2147483647 minimum value of | ong
SCHAR_MAX +127 maximum value of si gned char
SCHAR M N -127 minimum value of si gned char
SHRT _MAX  +32767 maximum value of short

SHRT M N -32767 minimum value of short

UCHAR MAX 255 maximum value of unsi gned char
U NT_MAX 65535 maximum value of unsi gned i nt
ULONG MAX 4294967295 maximum value of unsi gned | ong
USHRT MAX 65535 gﬁglrunlvalue of unsi gned

The nanes in the table below, a subset of <float.h> are constants related
to floating-point arithmetic. Wwen a value is given, it represents the
m ni mum magnitude for the corresponding quantity. Each inplenentation
defines appropriate val ues.

FLT_RADI X 2 radix of exponent, representation, e.g., 2, 16
FLT_ROUNDS floating-point rounding mode for addition

FLT_D G 6 decimal digits of precision

FLT_EPSI LON 1E-5 smallest number x such that 1.0+x !'= 1.0
FLT_MANT_DI G number of base FLT_RADI X in mantissa

FLT_MAX 1E+37  maximum floating-point number

FLT_MAX_EXP maximum n such that FLT_RADI X™ is representable
FLT_M N 1E-37  minimum normalized floating-point number

FLT_M N_EXP minimum n such that 10" is a normalized number
DBL_DI G 10 decimal digits of precision

DBL_EPSI LON 1E-9 smallest number x such that 1.0+x '= 1.0
DBL_MANT_DI G number of base FLT_RADI X in mantissa
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DBL_MAX 1E+37  maximum doubl e floating-point number
DBL_MAX_EXP maximum n such that FLT_RADI X™ is representable
DBL_M N 1E-37  minimum normalized doubl e floating-point number

DBL_M N_EXP minimum n such that 10" is a normalized number
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Appendix C - Summary of Changes

Since the publication of the first edition of this book, the definition of the C language has
undergone changes. Almost al were extensions of the origina language, and were carefully
designed to remain compatible with existing practice; some repaired ambiguities in the original
description; and some represent modifications that change existing practice. Many of the new
facilities were announced in the documents accompanying compilers available from AT&T,
and have subsequently been adopted by other suppliers of C compilers. More recently, the
ANSI committee standardizing the language incorporated most of the changes, and aso
introduced other sgnificant modifications. Their report was in part participated by some
commercial compilers even before issuance of the formal C standard.

This Appendix summarizes the differences between the language defined by the first edition of
this book, and that expected to be defined by the find standard. It treats only the language
itself, not its environment and library; although these are an important part of the standard,
there is little to compare with, because the first edition did not attempt to prescribe an
environment or library.

Preprocessing is more carefully defined in the Standard than in the first edition, and is
extended: it is explicitly token based; there are new operators for concatenation of
tokens (##), and creation of strings (#); there are new control lines like #el i f and
#pr agna; redeclaration of macros by the same token sequence is explicitly permitted;
parameters ingde strings are no longer replaced. Splicing of lines by \ is permitted
everywhere, not just in strings and macro definitions. See Par.A.12.

The minimum significance of al internal identifiers increased to 31 characters; the
smallest mandated significance of identifiers with external linkage remains 6 monocase
letters. (Many implementations provide more.)

Trigraph sequences introduced by ?? allow representation of characters lacking in
some character sets. Escapes for #\ ~[]{}| ~ are defined, see Par.A.12.1. Observe that
the introduction of trigraphs may change the meaning of strings containing the
sequence ?7.

New keywords (void, const, volatile, signed, enum) are introduced. The
stillborn ent ry keyword is withdrawn.

New escape sequences, for use within character constants and string literals, are
defined. The effect of following \ by a character not part of an approved escape
sequence is undefined. See Par.A.2.5.2.

Everyone's favorite trivial change: 8 and 9 are not octa digits.

The standard introduces a larger set of suffixes to make the type of constants explicit: U
or L for integers, F or L for floating. It also refines the rules for the type of unsffixed
constants (Par.A.2.5).

Adjacent string literals are concatenated.

There is a notation for wide-character string literals and character constants;, see
Par.A.2.6.

Characters as well as other types, may be explicitly declared to carry, or not to carry, a
sgn by using the keywords si gned or unsi gned. The locution 1ong float as a
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synonym for doubl e is withdrawn, but | ong doubl e may be used to declare an extra-
precision floating quantity.

For some time, type unsi gned char has been available. The standard introduces the
si gned keyword to make signedness explicit for char and other integral objects.

The void type has been avalable in most implementations for some years. The
Standard introduces the use of the voi d * type as a generic pointer type, previoudy
char * played this role. At the same time, explicit rules are enacted against mixing
pointers and integers, and pointers of different type, without the use of casts.

The Standard places explicit minima on the ranges of the arithmetic types, and
mandates headers (<linits. h> and <float.h>) giving the characteristics of each
particular implementation.

Enumerations are new since the first edition of this book.

The Standard adopts from C++ the notion of type quadlifier, for example const
(Par.A.8.2).

Strings are no longer modifiable, and so may be placed in read-only memory.

The “‘usua arithmetic conversions' are changed, essentidly from ““for integers,
unsi gned aways wins, for floating point, aways use doubl e" to ~“promote to the
smallest capacious-enough type." See Par.A.6.5.

The old assgnment operators like =+ are truly gone. Also, assgnment operators are
now single tokens; in the first edition, they were pairs, and could be separated by white
space.

A compiler's license to treat mathematically associative operators as computationally
associative is revoked.

A unary + operator is introduced for symmetry with unary - .

A pointer to a function may be used as a function designator without an explicit *
operator. See Par.A.7.3.2.

Structures may be assigned, passed to functions, and returned by functions.

Applying the address-of operator to arrays is permitted, and the result is a pointer to
the array.

The si zeof operator, in the first edition, yieded type int; subsequently, many
implementations made it unsigned. The Standard makes its type explicitly
implementation-dependent, but requires the type, si ze_t, to be defined in a standard
header (<stddef.h>). A gmilar change occurs in the type (ptrdiff_t) of the
difference between pointers. See Par.A.7.4.8 and Par.A.7.7.

The address-of operator & may not be applied to an object declared r egi st er, even if
the implementation chooses not to keep the object in aregister.

The type of a shift expression is that of the left operand; the right operand can't
promote the result. See Par.A.7.8.

The Standard legalizes the creation of a pointer just beyond the end of an array, and
allows arithmetic and relations on it; see Par.A.7.7.



217

The Standard introduces (borrowing from C++) the notion of a function prototype
declaration that incorporates the types of the parameters, and includes an explicit
recognition of variadic functions together with an approved way of dealing with them.
See Pars. A.7.3.2, A.8.6.3, B.7. The older styleis still accepted, with restrictions.

Empty declarations, which have no declarators and don't declare at least a structure,
union, or enumeration, are forbidden by the Standard. On the other hand, a declaration
with just a structure or union tag redeclares that tag even if it was declared in an outer
scope.

External data declarations without any specifiers or qualifiers (just a naked declarator)
are forbidden.

Some implementations, when presented with an ext er n declaration in an inner block,
would export the declaration to the rest of the file. The Standard makes it clear that the
scope of such adeclaration isjust the block.

The scope of parameters is injected into a function's compound statement, so that
variable declarations at the top level of the function cannot hide the parameters.

The name spaces of identifiers are somewhat different. The Standard puts dl tagsin a
sngle name space, and aso introduces a separate name space for labels, see
Par.A.11.1. Also, member names are associated with the structure or union of which
they are a part. (This has been common practice from some time.)

Unions may be initidlized; the initializer refers to the first member.
Automatic structures, unions, and arrays may be initialized, albeit in arestricted way.

Character arrays with an explicit Sze may be initiadlized by a string literal with exactly
that many characters (the\ 0 is quietly squeezed out).

The controlling expression, and the case |abels, of a switch may have any integral type.



